Open Access
Issue |
J. Space Weather Space Clim.
Volume 8, 2018
|
|
---|---|---|
Article Number | A47 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/swsc/2018033 | |
Published online | 23 October 2018 |
- Alberti T, Laurenza M, Cliver EW, Storini M, Consolini G, Lepreti F. 2017. Solar activity from 2006 to 2014 and short-term forecasts of solar proton events using the ESPERTA model. ApJ 838: 59. DOI: 10.3847/1538-4357/aa5cb8. [Google Scholar]
- Anastasiadis A, Papaioannou A, Sandberg I, Georgoulis M, Tziotziou K, Kouloumvakos A, Jiggens P. 2017. Predicting flares and solar energetic particle events: The FORSPEF tool. Sol Phys 292: 134. DOI: 10.1007/s11207-017-1163-7. [Google Scholar]
- Aschwanden MJ. 2017. Global energetics of solar flares. VI. Refined energetics of coronal mass ejections. ApJ 847: 27. DOI: 10.3847/1538-4357/aa8952. [NASA ADS] [CrossRef] [Google Scholar]
- Aschwanden MJ, Caspi A, Cohen CMS, Holman G, Jing J, Kretzschmar M, Kontar EP, McTiernan JM, Mewaldt RA, O’Flannagain A, Richardson IG, Ryan D, Warren HP, Xu Y. 2017. Energetics of solar flares. V. Energy closure in flares and coronal mass ejections. ApJ 836: 17. DOI: 10.3847/1538-4357/836/1/17. [NASA ADS] [CrossRef] [Google Scholar]
- Bai T. 1986. Two classes of gamma-ray/proton flares – impulsive and gradual. ApJ 308: 912–928. DOI: 10.1086/164561. [CrossRef] [Google Scholar]
- Balch CC. 2008. Updated verification of the Space Weather Prediction Centers solar energetic particle prediction model. Space Weather 6: S01001. DOI: 10.1029/2007SW000337. [CrossRef] [Google Scholar]
- Belov A. 2009. Properties of solar X-ray flares and proton event forecasting. Adv Space Res 43: 467–473. DOI: 10.1016/j.asr.2008.08.011. [Google Scholar]
- Crosby N, Heynderickx D, Jiggens P, Aran A, Sanahuja B, et al. 2015. SEPEM: A tool for statistical modeling the solar energetic particle environment. Space Weather 13: 406–426. DOI: 10.1002/2013SW001008. [CrossRef] [Google Scholar]
- Dierckxsens M, Tziotziou K, Dalla S, Patsou I, Marsh MS, Crosby NB, Malandraki O, Tsiropoula G. 2015. Relationship between Solar Energetic Particles and Properties of Flares and CMEs: Statistical Analysis of Solar Cycle 23 Events. Sol Phys 290: 841–874. DOI: 10.1007/s11207-014-0641-4. [Google Scholar]
- Garcia HA. 1994a. Temperature and hard X-ray signatures for energetic proton events. ApJ 420: 422–432. DOI: 10.1086/173572. [CrossRef] [Google Scholar]
- Garcia HA. 1994b. Temperature and emission measure from GOES soft X-ray measurements. Sol Phys 154: 275–308. DOI: 10.1007/BF00681100. [Google Scholar]
- Garcia HA. 2004a. Forecasting methods for occurrence and magnitude of proton storms with solar soft X rays. Space Weather 2: S02002. DOI: 10.1029/2003SW000001. [Google Scholar]
- Garcia HA. 2004b. Forecasting methods for occurrence and magnitude of proton storms with solar hard X rays. Space Weather 2: S06003. DOI: 10.1029/2003SW000035. [Google Scholar]
- Grayson JA, Krucker S, Lin RP. 2009. A statistical study of spectral hardening in solar flares and related solar energetic particle events. ApJ 707: 1588–1594. DOI: 10.1088/0004-637X/707/2/1588 [CrossRef] [Google Scholar]
- Gardner MW, Dorling SR. 1998. Artificial neural networks (the multilayer perceptron) – a review of applications in the atmospheric sciences. Atmos Environ 32: 2627–2636. DOI: 10.1016/S1352-2310(97)00447-0. [CrossRef] [Google Scholar]
- Huang X, Wang H-N, Li L-P. 2012. Ensemble prediction model of solar proton events associated with solar flares and coronal mass ejections. Res Astron Astrophys 12: 313–321. DOI: 10.1088/1674-4527/12/3/007. [CrossRef] [Google Scholar]
- Ji E-Y, Moon Y-J, Park J. 2014. Forecast of solar proton flux profiles for well-connected events. J Geophys Res: Space Phys 119: 9383–9394. DOI: 10.1002/2014JA020333. [CrossRef] [Google Scholar]
- Kahler SW. 2012. Solar energetic particle events and the Kiplinger Effect. ApJ 747: 66. DOI: 10.1088/0004-637X/747/1/66. [CrossRef] [Google Scholar]
- Kahler SW, Ling AG. 2018. Suprathermal ion backgrounds of solar energetic particle events. ApJ, submitted. [Google Scholar]
- Kahler SW, Cliver EW, Ling AG. 2007. Validating the proton prediction system (PPS). J Atmos Solar Terr Phys 69: 43–49. DOI: 10.1016/j.jastp.2006.06.009. [Google Scholar]
- Kahler SW, White SM, Ling AG. 2017. Forecasting E > 50-MeV proton events with the proton prediction system (PPS). J Space Weather Space Clim 7: A27. DOI: 10.1051/swsc/2017025. [CrossRef] [Google Scholar]
- Kiplinger A. 1995. Comparative studies of hard X-ray spectral evolution in solar flares with high energy proton events observed at Earth. ApJ 453: 973–986. DOI: 10.1086/176457. [NASA ADS] [CrossRef] [Google Scholar]
- Laurenza M, Cliver EW, Hewitt J, Storini M, Ling AG, Balch CC, Kaiser ML. 2009. A technique for short-term warning of solar energetic particle events based on flare location, flare size, and evidence of particle escape. Space Weather 7: , S04008. DOI: 10.1029/2007SW000379. [NASA ADS] [CrossRef] [Google Scholar]
- Marsh MS, Dalla S, Dierckxsens SM, Laitinen T, Crosby NB. 2015. SPARX: A modeling system for solar energetic particle radiation space weather forecasting. Space Weather, 13, 386–394. [NASA ADS] [CrossRef] [Google Scholar]
- Miteva R, Klein K-L, Malandraki O, Dorrian G. 2013. Solar energetic particle events in the 23rd Solar Cycle: Interplanetary magnetic field configuration and statistical relationship with flares and CMEs. Sol Phys 282: 579–613. DOI: 10.1007/s11207-012-0195-2. [Google Scholar]
- Papaioannou A, Anastasiadis A, Sandberg I, Georgoulis MK, Tsiropoula G, Tziotziou K, Jiggens P, Hilgers A. 2015. A Novel Forecasting System for Solar Particle Events and Flares (FORSPEF). J Phys Conf. Ser 632: 012075. DOI: 10.1088/1742-6596/632/1/012075. [Google Scholar]
- Papaioannou A, Anastasiadis A, Kouloumvakos M, Paassilta M, Vainio R, Valtonen E, Belov A, Eroshenko E, Abunina M, Abunin A. 2018. Nowcasting Solar Energetic Particle (SEP) events using Principal Components Analysis (PCA). Sol Phys 293: 100. DOI: 10.1007/s11207-018-1320-7. [CrossRef] [Google Scholar]
- Park J, Moon Y-J. 2014. What flare and CME parameters control the occurrence of solar proton events?. J Geophys Res: Space Phys 119: 9456–9463. DOI: 10.1002/2014JA020272. [CrossRef] [Google Scholar]
- Park J, Moon Y-J, Lee H. 2017. Dependence of the peak fluxes of solar energetic particles on CME 3D parameters from STEREO and SOHO. ApJ 844: 17. DOI: 10.3847/1538-4357/aa794a. [CrossRef] [Google Scholar]
- Pedregosa F, Varoquaux G, Gramfort A, et al. 2011. Scikit-learn: Machine learning in python. J Mach Learn Res 12: 2825–2830. [Google Scholar]
- Reames DV. 2013. The two sources of solar energetic particles. Space Sci Rev 175: 53–92. DOI: 10.1007/s11214-013-9958-9. [Google Scholar]
- Ryan DF, Milligan RO, Gallagher PT, Dennis BR, Tolbert AK, Schwartz RA, Young CA. 2012. The thermal properties of solar flares over three solar cycles using GOES X-ray observations. ApJS 202: 11. DOI: 10.1088/0067-0049/202/2/11. [NASA ADS] [CrossRef] [Google Scholar]
- Ryan DF, Dominique M, Seaton D, Stegen K, White A. 2016. Effects of flare definitions on the statistics of derived flare distributions. A&A 592: A133. DOI: 10.1051/0004-6361/201628130. [CrossRef] [EDP Sciences] [Google Scholar]
- Schwadron NA, Cooper JF, Desai M, Downs C, Gorby M. 2017. Particle radiation sources, propagation and interactions in deep space, at earth, the Moon, Mars, and beyond: examples of radiation interactions and effects. Space Sci Rev 212: 1069–1106. DOI: 10.1007/s11214-017-0381-5. [NASA ADS] [CrossRef] [Google Scholar]
- Cyr OCSt., Posner A, Burkepile JT. 2017. Solar energetic particle warnings from a coronagraph. Space Weather 15: 240–257. DOI: 10.1002/2016SW001545 [CrossRef] [Google Scholar]
- Smart DF, Shea MA. 1992. Modeling the time-intensity profile of solar flare generated particle fluxes in the inner heliosphere. Adv Space Res 12: 303–312. DOI: 10.1016/0273-1177(92)90120-M. [Google Scholar]
- Swalwell B, Dalla S, Walsh RW. 2017. Solar energetic particle forecasting algorithms and associated false alarms. Sol Phys 292: 173. DOI: 10.1007/s11207-017-1196-y. [CrossRef] [Google Scholar]
- Tribble A. 2010. Energetic particles and technology, In: Heliophysics: space storms and radiation: causes and effects, Schrijver CJ, Siscoe GL (Eds.), Cambridge Univ. Press, London, pp. 381–399. [CrossRef] [Google Scholar]
- Trottet G, Samwel S, Klein K-L, Dudok de Wit T, Miteva R. 2015. Statistical evidence for contributions of flares and coronal mass ejections to major solar energetic particle events. Sol Phys 290: 819–839. [Google Scholar]
- Veronig A, Temmer M, Hanslmeier A, Otruba W, Messerotti M. 2002. Temporal aspects and frequency distributions of solar soft X-ray flares. A&A 382: 1070–1080. DOI: 10.1051/0004-6361:20011694. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Warmuth A, Mann G. 2016. Constraints on energy release in solar flares from RHESSI and GOES X-ray observations. II. Energetics and energy partition. A&A 588: A116. DOI: 10.1051/0004-6361/201527475. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- White SM, Thomas RJ, Schwartz RA. 2005. Updated expressions for determining temperatures and emission measures from GOES soft X-ray measurements. Sol Phys 227: 231–248. DOI: 10.1002/2015SW001170. [CrossRef] [Google Scholar]
- Winter LM, Balasubramaniam K. 2015. Using the maximum X-ray flux ratio and X-ray background to predict solar flare class. Space Weather 13: 286–297. DOI: 10.1002/2015SW001170. [NASA ADS] [CrossRef] [Google Scholar]
- Yashiro S, Gopalswamy N. 2008. Statistical relationship between solar flares and coronal mass ejections. Universal Heliophysical Processes, Proc. I.A.U, IAU Symp. 257: 233–243. DOI: 10.1017/S1743921309029342 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.