Open Access
Issue
J. Space Weather Space Clim.
Volume 8, 2018
Article Number A44
Number of page(s) 12
DOI https://doi.org/10.1051/swsc/2018035
Published online 16 October 2018
  • Asmus VV, Zagrebaev VA, Makridenko LA, Milekhin OE, Solov’ev VI, Uspenskii AB, Frolov AV, Khailov MN. 2014. Meteorological satellites based on Meteor-M polar orbiting platform. Russ Meteorol Hydrol 39 (12): 787–794. DOI: 10.3103/S1068373914120012. [CrossRef] [Google Scholar]
  • Baker DJ. 1974. Rayleigh, the unit for light radiance. Appl Opt 13: 2160–2163. DOI: 10.1364/A0.13.002160. [CrossRef] [Google Scholar]
  • Baluja KL, Zeippen CJ. 1988. M1 and E2 transition probabilities for states within the 2p4 configuration of the O I isoelectronic sequence. J Phys B: At Mol Phys 21: 1455–1471. DOI: 10.1088/0953-4075/21/9/007. [NASA ADS] [CrossRef] [Google Scholar]
  • Bilitza D, Brown SA, Wang MY, Souza JR, Roddy PA. 2012. Measurements and IRI model predictions during the recent solar minimum. J Atmos Sol Terr Phys 86: , 99–106. DOI: 10.1016/j.jastp.2012.06.010. [CrossRef] [Google Scholar]
  • Birn J,Artemyev AV,Baker DN, Echim M, Hoshino M, Zelenyi LM. 2012. Particle Acceleration in the Magneto tail and Aurora. Space Sci Rev 173: 49–102. DOI: 10.1007/s11214-012-9874-4. [NASA ADS] [CrossRef] [Google Scholar]
  • Broadfoot AL, Hatfield DB, Anderson ER, Stone TC, Sandel BR, Gardner JA, Murad E, Knecht DJ, Pike CP, Viereck RA. 1997. N2 triplet band systems and atomic oxygen in the dayglow. J Geophys Res 102: 11567–11584. DOI: 10.1029/97JA00771. [NASA ADS] [CrossRef] [Google Scholar]
  • Christensen AB, Paxton LJ, Avery S, Craven J, Crowley G. 2003. Initial observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED satellite mission. J Geophys Res (Space Phys) 108: 1451. DOI: 10.1029/2003JA009918. [CrossRef] [Google Scholar]
  • Cisek M, Makuch P, Petelski T. 2017. Comparison of meteorological conditions in Svalbard fjords: Hornsund and Kongsfjorden. Oceanologia 59 (4): 413–421. DOI: https://doi.org/10.1016/j.oceano.2017.06.004, URL http://www.sciencedirect.com/science/article/pii/SQQ783234173QS672. [CrossRef] [Google Scholar]
  • Diard T, de la Barriere F, Ferrec Y,Guerineau N, Rommeluere S, Le Coarer E, Martin G. 2016.Compact high-resolution micro-spectrometer on chip: spectral calibration and first spectrum. In: Micro- and Nanotechnology Sensors, Systems, and Applications VIII, vol. 9836 of Proc. SPIE, 98362W. DOI: 10.1117/12.2223692 [Google Scholar]
  • Germany GA, Spann JF, Parks GK, Brittnacher MJ, Elsen R, Chen L, Lummerzheim D, Rees MH. 1998. Auroral Observations from the POLAR Ultraviolet Imager (UVI). Washington DC American Geophysical Union Geophysical Monograph Series 104: 149. DOI: 10.1029/GM104p0149. [Google Scholar]
  • Gillard F, Ferrec Y, Guérineau N, Rommeluère S, Taboury J, Chavel P. 2012. Angular acceptance analysis of an infrared focal plane array with a built-in stationary Fourier transform spectrometer. J Opt Soc Am A 29: 936. DOI: 10.1364/JOSAA.29.000936. [CrossRef] [Google Scholar]
  • Goguen JD, Stone TC, Kieffer HH, Buratti BJ. 2010. A new look at photometry of the Moon. Icarus 208: 548–557. DOI: 10.1016/j.icarus.2010.03.025. [CrossRef] [Google Scholar]
  • Grubbs G, Michell R, Samara M, Hampton D, Jahn J-M. 2016. A synthesis of star calibration techniques for ground-based narrowband electron-multiplying charge-coupled device imagers used in auroral photometry. J Geophys Res (Space Phys) 121: 5991–6002. DOI: 10.1002/2015JA022186. [CrossRef] [Google Scholar]
  • Hecht JH, Strickland DJ, Conde MG. 2006. The application of ground-based optical techniques for inferring electron energy deposition and composition change during auroral precipitation events. Journal of Atmospheric and Solar-Terrestrial Physics 68: 1502–1519. DOI: 10.1016/j.jastp.2005.06.022. [CrossRef] [Google Scholar]
  • Hevner R, Holemans W. 2011. An Advanced Standard for CubeSats, Paper SSC11-II-3. In: 25th Annual AIAA/USU Conference on Small Satellites, SSC11-II-3. [Google Scholar]
  • Kaeppler SR, Hampton DL, Nicolls MJ, Stromme A, Solomon SC, Hecht JH, Conde MG. 2015. An investigation comparing ground-based techniques that quantify auroral electron flux and conductance. J Geophys Res (Space Phys) 120: 9038–9056. DOI: 10.1002/2015JA021396. [CrossRef] [Google Scholar]
  • Kalegaev VV, Barinova WO, Myagkova IN, Eremeev VE, Parunakyan DA, Nguyen MD, Barinov OG. 2018. Empirical model of the high-latitude boundary of the Earth’s outer radiation belt at altitudes of up to 1000 km. Cosm. Res. 56 (1): 32–37. DOI: 10.1134/S0010952518010069. [CrossRef] [Google Scholar]
  • Kauristie K, Pulkkinen TI, Amm O, Viljanen A, Syrjasuo M, et al. 2001. Ground-based and satellite observations of high-latitude auroral activity in the dusk sector of the auroral oval. Ann Geophys 19: 1683–1696. DOI: 10.5194/angeo-19-1683-2001. [CrossRef] [Google Scholar]
  • Kieffer HH. 1997. Photometric Stability of the Lunar Surface. Icarus 130 (2): 323–327. DOI: https://doi.org/10.1006/icar.1997.5822. [CrossRef] [Google Scholar]
  • Lacherade S, Aznay O, Fougnie B, Lebegue L. 2014. POLO: a unique dataset to derive the phase angle dependence of the Moon irradiance. In: Sensors, Systems, and Next-Generation Satellites XVIII, vol. 9241 of Proc. SPIE, 924112. DOI: 10.1117/12.2067283. [Google Scholar]
  • Le Coarer E, Guerineau N, Martin G, Rommeluere S,Ferrec Y,Schmitt B. 2014. SWIFTS-LA: an unprecedently small static imaging Fourier transform spectrometer. In: Proc. SPIE 10563, International Conference on Space Optics – ICSO 2014, 105634J, 17 November 2017. DOI: http://dx.doi.org/10.1117/12.2304159 [Google Scholar]
  • Lilensten J, Blelly PL. 2002. The TEC and F2 parameters as tracers of the ionosphere and thermosphere. J Atmos Sol Terr Phys 64: 775–793. DOI: 10.1016/S1364-6826(02)00079-2. [NASA ADS] [CrossRef] [Google Scholar]
  • Lilensten J, Moen J, Barthelemy M, Thissen R, Simon C, Lorentzen DA, Dutuit O, Amblard PO, Sigernes F. 2008. Polarization in aurorae: A new dimension for space environments studies. Geophys Res Lett 35: L08804. DOI: 10.1029/2007GL033006. [CrossRef] [Google Scholar]
  • Lummerzheim D, Lilensten J. 1994. Electron transport and energy degradation in the ionosphere: Evaluation of the numerical solution, comparison with laboratory experiments and auroral observations. Ann Geophys 12: , 1039–1051. DOI: 10.1007/s00585-994-1039-7. [NASA ADS] [CrossRef] [Google Scholar]
  • Megan-Gillies D, Knudsen D, Donovan E, Jackel B, Gillies R, Spanswick E. 2017. Identifying the 630 nm auroral arc emission height: A comparison of the triangulation, FAC profile, and electron density methods. J Geophys Res (Space Phys) 122: 8181–8197. DOI: 10.1002/2016JA023758. [CrossRef] [Google Scholar]
  • Newell PT, Liou K, Zhang Y, Sotirelis T, Paxton LJ, Mitchell EJ. 2014. OVATION Prime-2013: Extension of auroral precipitation model to higher disturbance levels. Space Weather 12: 368–379. DOI: 10.1002/2014SW001056. [CrossRef] [Google Scholar]
  • Panasyuk MI, Podzolko MV, Kovtyukh AS, Brilkov IA, Vlasova NA, Kalegaev VV, Osedlo VI, Tulupov VI, Yashin IV. 2017. Optimization of measurements of the Earth’s radiation belt particle fluxes. Cosm. Res. 55: 79–87. DOI: 10.1134/S0010952516060071. [CrossRef] [Google Scholar]
  • Picone JM, Hedin AE, Drob DP, Aikin AC. 2002. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J Geophys Res (Space Phys) 107: 1468. DOI: 10.1029/2002JA009430. [Google Scholar]
  • Rommeluere S, Guerineau N, Haidar R, Deschamps J, de Borniol E, Million A, Chamonal J-P. 2008. Chamonal, and Destefanis. Infrared focal plane array with a built-in stationary Fourier-transform spectrometer: basic concepts.Opt Lett 3 (3): 1062. DOI: 10.1364/OL.33.001062. [CrossRef] [PubMed] [Google Scholar]
  • Saito H, Hirahara M, Mizuno T, Fukuda S, Fukushima Y, et al. .2011.Small satellite REIMEI for auroral observations.Acta Astronaut 69 (7): 499–513. DOI: https://doi.org/10.1016/j.actaastro.2011.05.007. [CrossRef] [Google Scholar]
  • Sheese PE, Llewellyn EJ, Gattinger RL, Strong K. 2014. OH Meinel band nightglow profiles from OSIRIS observations. J Geophys Res (Atmos.) 119: 11. DOi: 10.1002/2014JD021617. [CrossRef] [Google Scholar]
  • Sigernes F, Dyrland M, Brekke P, Chernouss S, Lorentzen DA, Oksavik K, Sterling Deehr C. 2011. Two methods to forecast auroral displays. J Space Weather Space Clim 1 (27): A03, DOI: 10.1051/swsc/2011003. [CrossRef] [Google Scholar]
  • Simon Wedlund C, Lamy H, Gustavsson B, Sergienko T, Brändström U. 2013. Estimating energy spectra of electron precipitation above auroral arcs from ground-based observations with radar and optics. J Geophys Res (Space Phys) 118: 3672–3691. DOi: 10.1002/jgra.50347. [CrossRef] [Google Scholar]
  • Sims G, Ashley MCB, Cui X, Everett JR, Feng L, et al.. 2012. Airglow and Aurorae at Dome A Antarctica. PASP 124: 637. DOI: 10.1086/666861. [CrossRef] [Google Scholar]
  • Stone TC, Kieffer HH. 2004. Assessment of uncertainty in ROLO lunar irradiance for on-orbit calibration. Barnes WL, Butler JJ (Eds.). Earth Observing Systems IX, vol. 5542 of Proc. SPIE, 300–310. DOI: 10.1117/12.560236 [CrossRef] [Google Scholar]
  • Strickland DJ, Meier RR, Hecht JH, Christensen AB. 1989. Deducing composition and incident electron spectra from ground-based auroral optical measurements. I – Theory and model results. II – A study of auroral red line processes. III – Variations in oxygen density. J. Geophys. Res. 94: 13527–13539. DOI: 10.1029/JA094iA10p13527. [CrossRef] [Google Scholar]
  • Teillet PM, Barsi JA, Chander G, Thome KJ. 2007. Prime candidate Earth targets for the post-launch radiometric calibration of space-based optical imaging instruments. In Earth Observing Systems XIIIn: Earth Observing Systems XII. vol. 6677 of Proc. SPIE, 66770S. DOI: 10.1117/12.733156 [CrossRef] [Google Scholar]
  • Torr MR, Torr DG. 1982. The role of metastable species in the thermosphere. Rev Geophys Space Phys 20: 91–144. [CrossRef] [Google Scholar]
  • Tuttle S, Gustavsson B, Lanchester B. 2014. Temporal and spatial evolution of auroral electron energy spectra in a region surrounding the magnetic zenith. J Geophys Res (Space Phys) 119: 2318–2327. [CrossRef] [Google Scholar]
  • Vialatte A, Barthelemy M, Lilensten J. 2017. Impact of Energetic Electron Precipitation on the Upper Atmosphere: Nitric Monoxide. Open Atmos Sci J 11: 88–104. [CrossRef] [Google Scholar]
  • Wagner SC, Hewison T, Stone T, Lacherade S, Fougnie B, Xiong X. 2015. A summary of the joint GSICS – CEOS/IVOS lunar calibration workshop: moving towards intercalibration using the Moon as a transfer target. In: Sensors, Systems, and Next-Generation Satellites XIX, vol. 9639 of Proc. SPIE, 96390Z. DOI: 10.1117/12.2193161. [Google Scholar]
  • Xiong X, Lacherade S, Lebegue L, Fougnie B, Angal A, Wang Z, Aznay O. 2014. Comparison of MODIS and PLEIADES Lunar observations. In: Sensors, Systems, and Next-Generation Satellites XVIII, vol. 9241 of Proc. SPIE, 924111. DOI: 10.1117/12.2067442. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.