Open Access
Issue
J. Space Weather Space Clim.
Volume 8, 2018
Article Number A43
Number of page(s) 18
DOI https://doi.org/10.1051/swsc/2018028
Published online 10 October 2018
  • Bandiera F, Orlando D, Ricci G. 2009. CFAR detection strategies for distributed targets under conic constraints. IEEE Trans Signal Process 57(9): 3305–3316. [CrossRef] [Google Scholar]
  • Barkat M. 2005. Signal detection and estimation, 2nd edn. Artech House. [Google Scholar]
  • Boiko A, Mel’Nik V, Konovalenko A, Rucker H, Abranin E, Dorovskyy V, Lecacheux A. 2011. Frequency drift rates of powerful decameter Type III bursts. Adv Astron Space Phys 1: 57–60. [Google Scholar]
  • Bonnin X, Aboudarham J, Fuller N, Renie C, Perez-Suarez D, Gallagher P, Higgins P, Krista L, Csillaghy A, Bentley R. 2011. Automated detection and tracking of solar and heliospheric features in the frame of the European project HELIO. SF2A-2011: Proc. Annu. Meeting French Soc Astron Astrophys 373: 377. [Google Scholar]
  • Bothmer V, Daglis IA. 2007. Space weather: physics and effects. Springer Science & Business Media. [Google Scholar]
  • Cai L, Ma X, Xu Q, Li B, Ren S. 2011. Performance Analysis of Some New CFAR Detectors under Clutter. J Comput 6(6): 1278–1285. [Google Scholar]
  • Cairns I, Robinson R. 1987. Herringbone bursts associated with type II solar radio emission. Sol Phys 111(2): 365–383. [Google Scholar]
  • Carley EP, Reid H, Vilmer N, Gallagher PT. 2015. Low frequency radio observations of bi-directional electron beams in the solar corona. A&A 581: A100. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Czaplicki JM. 2014. Statistics for Mining Engineering. CRC Press. [CrossRef] [Google Scholar]
  • Deans SR. 2007. The Radon transform and some of its applications. Dover Books on Mathematics Series. Dover Publications, ISBN 9780486462417. URL https://books.google.fr/books?id=xSCc0KGi0u0C. [Google Scholar]
  • Fawcett T. 2006. An introduction to ROC analysis. Pattern Recogn Lett 27(8): 861–874. [CrossRef] [Google Scholar]
  • Fry EK. 2012. The risks and impacts of space weather: Policy recommendations and initiatives. Space Policy 28(3): 180–184. [CrossRef] [Google Scholar]
  • Gunes T, Erdol N. 2006. HMM based spectral frequency line tracking: Improvements and new results. In: Acoustics, Speech and Signal Processing, 2006, ICASSP 2006 Proceedings. 2006 IEEE International Conference on, 2, IEEE. [Google Scholar]
  • Horvatic D, Stanley HE, Podobnik B. 2011. Detrended cross-correlation analysis for non-stationary time series with periodic trends. EPL 94(1): 18007. [CrossRef] [EDP Sciences] [Google Scholar]
  • Jen JJ. 2011. A study of CFAR implementation cost and performance tradeoffs in heterogeneous environments, Ph.D. Thesis, California State Polytechnic University, Pomona. [Google Scholar]
  • Jones J, Richards GP. 2014. Automated recognition of type III solar radio bursts using mathematical morphology. In: Advanced Maui Optical and Space Surveillance Technologies Conference. [Google Scholar]
  • Kataoka R, Sato T, Hiroshi Y. 2011. Predicting radiation dose on aircraft from solar energetic particles. Space Weather 9(8): 1–2. [CrossRef] [Google Scholar]
  • Kong X-L, Chen Y, Li G, Feng S-W, Song H-Q, Guo F, Jiao F-R. 2012. A broken solar type II radio burst induced by a coronal shock propagating across the streamer boundary. ApJ 750(2): 158. [NASA ADS] [CrossRef] [Google Scholar]
  • Lecacheux A. 2000. The Nançay decameter array: A useful step towards giant, new generation radio telescopes for long wavelength radio astronomy. Radio Astronomy at Long Wavelengths 119: 321–328. [CrossRef] [Google Scholar]
  • Lobzin VV, Cairns IH, Robinson PA, Steward G, Patterson G. 2009. Automatic recognition of type III solar radio bursts: automated radio burst identification system method and first observations. Space Weather 7(4). [Google Scholar]
  • Lobzin VV, Cairns IH, Robinson PA, Steward G, Patterson G. 2010. Automatic recognition of coronal type II radio bursts: the automated radio burst identification system method and first observations. ApJ 710(1): L58. [NASA ADS] [CrossRef] [Google Scholar]
  • Loong T-W. 2003. Understanding sensitivity and specificity with the right side of the brain. BMJ 327(7417): 716–719. [CrossRef] [Google Scholar]
  • McCauley JL, Bassler KE, Gunaratne GH. 2008. Martingales, detrending data, and the efficient market hypothesis. Phys A 387(1): 202–216. [CrossRef] [Google Scholar]
  • Mukhopadhyay P, Chaudhuri BB. 2015. A survey of Hough transform. Pattern Recognition 48(3): 993–1010. [CrossRef] [Google Scholar]
  • Munro R, Gosling J, Hildner E, MacQueen R, Poland A, Ross C. 1979. The association of coronal mass ejection transients with other forms of solar activity. Sol Phys 61(1): 201–215. [NASA ADS] [CrossRef] [Google Scholar]
  • Nindos A, Aurass H, Klein K-L, Trottet G. 2008. Radio emission of flares and coronal mass ejections. Sol Phys 253(1–2): 3. [Google Scholar]
  • Nita GM, Gary DE, Liu Z, Hurford GJ, White SM. 2007. Radio frequency interference excision using spectral-domain statistics. PASP 119(857): 805. [CrossRef] [Google Scholar]
  • Pick M, Vilmer N. 2008. Sixty-five years of solar radioastronomy: flares, coronal mass ejections and Sun–Earth connection. A&ARv 16(1–2): 1–153. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Richards MA. 2005. Fundamentals of radar signal processing. Tata McGraw-Hill Education. [Google Scholar]
  • Storath M, Weinmann A. 2017. Fast median filtering for phase or orientation data. IEEE Transactions on Pattern Analysis and Machine Intelligence. [Google Scholar]
  • Tumilaar K, Langi Y, Rindengan A. 2015. Hidden Markov Model. Cartesian 4(1): 86–94. [Google Scholar]
  • Zarka P, Cecconi B, Kurth W. 2004. Jupiter’s low-frequency radio spectrum from Cassini/Radio and Plasma Wave Science (RPWS) absolute flux density measurements. J Geophys Res: Space Phys 109(A9): 1–12. [CrossRef] [Google Scholar]
  • Zhang Y, Du A, Du D, Sun W. 2014. Evaluation of a Revised Interplanetary Shock Prediction Model: 1D CESE-HD-2 Solar-Wind Model. Sol Phys 289(8): 3159–3173. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.