Open Access
Issue |
J. Space Weather Space Clim.
Volume 9, 2019
|
|
---|---|---|
Article Number | A4 | |
Number of page(s) | 21 | |
DOI | https://doi.org/10.1051/swsc/2018049 | |
Published online | 23 January 2019 |
- Borgazzi A, Lara A, Echer E, Alves MV. 2009. Dynamics of coronal mass ejections in the interplanetary medium. A&A 498: 885. DOI: 10.1051/0004-6361/200811171. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Brueckner GE, Howard RA, Koomen MJ, Korendyke CM, Michels DJ, et al. 1995. The large angle spectroscopic coronagraph (LASCO). Sol Phys 162: 357. DOI: 10.1007/BF00733434. [CrossRef] [Google Scholar]
- Burlaga LF, Plunkett SP, St. Cyr OC. 2002. Successive CMEs and complex ejecta. J Geophys Res 107: 1266. DOI: 10.1029/2001JA000255. [Google Scholar]
- Burlaga L, Berdichevsky D, Gopalswamy N, Lepping R, Zurbuchen T. 2003. Merged interaction regions at 1 AU. J Geophys Res 108: 1425. DOI: 10.1029/2003JA010088. [NASA ADS] [CrossRef] [Google Scholar]
- Cantó J, Gonzalez RF, Raga AC, de Gouveia Dal Pino EM, Lara A, González-Esparza JA. 2005. The dynamics of velocity fluctuations in the solar wind – I. Coronal mass ejections. MNRAS 357: 572. DOI: 10.1111/j.1365-2966.2005.08670.x. [NASA ADS] [CrossRef] [Google Scholar]
- Cargill PJ. 2004. On the aerodynamic drag force acting on interplanetary coronal mass ejections. Sol Phys 221: 135. DOI: 10.1023/B:SOLA.0000033366.10725.a2. [CrossRef] [Google Scholar]
- Chen J. 1996. Theory of prominence eruption and propagation: Interplanetary consequences. J Geophys Res 101: 27499. DOI: 10.1029/96JA02644. [Google Scholar]
- Colaninno RC, Vourlidas A. 2009. First determination of the true mass of coronal mass ejections: A novel approach to using the two STEREO viewpoints. ApJ 698: 852. DOI: 10.1088/0004-637X/698/1/852. [Google Scholar]
- Cranmer SR. 2004. New views of the solar wind with the Lambert W function. Am J Phys 72: 1397. DOI: 10.1119/1.1775242. [Google Scholar]
- Despirak IV, Lubchich AA, Yahnin AG, Kozelov BV, Biernat HK. 2009. Development of substorm bulges during different solar wind structures. Ann Geophys 27: 1951. DOI: 10.5194/angeo-27- 1951-2009. [CrossRef] [Google Scholar]
- Falkenberg TV, Vršnak B, Taktakishvili A, Odstrcil D, MacNeice P, Hesse M. 2010. Investigations of the sensitivity of a coronal mass ejection model (ENLIL) to solar input parameters. Space Weather 8: 6. DOI: 10.1029/2009SW000555. [Google Scholar]
- González RF, de Gouveia Dal Pino EM, Raga AC, Velazquez PF. 2004a. Gasdynamical simulations of the large and little homunculus nebulae of carinae. ApJ 600: L59. DOI: 10.1086/381390. [NASA ADS] [CrossRef] [Google Scholar]
- González RF, de Gouveia Dal Pino EM, Raga AC, Velazquez PF. 2004b. Numerical modeling of carinae bipolar outflows. ApJ 616: 976. DOI: 10.1086/425112. [NASA ADS] [CrossRef] [Google Scholar]
- González RF, Villa AM, Gomez GC, de Gouveia Dal Pino EM, Raga AC, Cant J, Velazquez PF, de La Fuente E. 2010. Revisiting 2D numerical models for the 19th century outbursts of carinae. MNRAS 402: 1141. DOI: 10.1111/j.1365-2966.2009.15950.x. [NASA ADS] [CrossRef] [Google Scholar]
- González-Esparza JA, Lara A, Santillan A, Gopalswamy N. 2003. A numerical study on the evolution of CMEs and shocks in the interplanetary medium. Solar Wind Ten 679: 206. DOI: 10.1063/1.1618578. [CrossRef] [Google Scholar]
- Gopalswamy N. 2016. History and development of coronal mass ejections as a key player in solar terrestrial relationship. Geosci Lett 3: 8. DOI: 10.1186/s40562-016-0039-2. [Google Scholar]
- Gopalswamy N, Yashiro S, Kaiser ML, Howard RA, Bougeret J-L. 2001. Radio signatures of coronal mass ejection interaction: Coronal mass ejection cannibalism? ApJ 548: L91. DOI: 10.1086/318939. [Google Scholar]
- Harrison RA, Davies JA, Mostl C, Liu Y, Temmer M, et al. 2012. An Analysis of the origin and propagation of the multiple coronal mass ejections of 2010 August 1. ApJ 750: 45. DOI: 10.1088/0004-637X/750/1/45. [NASA ADS] [CrossRef] [Google Scholar]
- Howard RA, Sheeley NR Jr, Michels DJ, Koomen MJ. 1985. Coronal mass ejections: 1979–1981. J Geophys Res 90: 8173. DOI: 10.1029/JA090iA09p08173. [NASA ADS] [CrossRef] [Google Scholar]
- Howard RA, Moses JD, Vourlidas A, Newmark JS, Socker DG, et al. 2008. Sun earth connection coronal and heliospheric investigation (SECCHI). SSR 136: 67. DOI: 10.1007/s11214-008-9341-4. [Google Scholar]
- Huttunen KEJ, Schwenn R, Bothmer V, Koskinen HEJ. 2005. Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23. Ann Geophys 23: 625. DOI: 10.5194/angeo-23-625-2005. [Google Scholar]
- Kay C, Opher M. 2015. The heliocentric distance where the deflections and rotations of solar coronal mass ejections occur. ApJ 811: L36. DOI: 10.1088/2041-8205/811/2/L36. [NASA ADS] [CrossRef] [Google Scholar]
- Lara A, González-Esparza JA, Gopalswamy N. 2004. Characteristics of coronal mass ejections in the near Sun interplanetary space. Geofis Int 43: 1. [Google Scholar]
- Lara A, Gopalswamy N, Xie H, Mendoza-Torres E, Prez-Erquez R, Michalek G. 2006. Are halo coronal mass ejections special events? J Geophys Res 111: A6. DOI: 10.1029/2005JA011431. [Google Scholar]
- Liu YD, Luhmann JG, Mostl C, Martinez-Oliveros JC, Bale SD, Lin RP, Harrison RA, Temmer M, Webb DF, Odstrcil D. 2012. Interactions between coronal mass ejections viewed in coordinated imaging and in situ observations. ApJ 746: L15. DOI: 10.1088/2041-8205/746/2/L15. [CrossRef] [Google Scholar]
- Liu YD, Luhmann JG, Lugaz N, Möstl C, Davies JA, Bale SD, Lin RP. 2013. On Sun-to-Earth propagation of coronal mass ejections. ApJ 769: 45. DOI: 10.1088/0004-637X/769/1/45. [NASA ADS] [CrossRef] [Google Scholar]
- Lugaz N, Vourlidas A, Roussev II, Jacobs C, Manchester WB IV, Cohen O. 2008. The brightness of density structures at large solar elongation angles: What is being observed by STEREO SECCHI? ApJ 684: L111. DOI: 10.1086/592217. [CrossRef] [Google Scholar]
- Lugaz N, Farrugia CJ, Davies JA, Roussev II, Temmer M. 2012. The deflection of the two interacting coronal mass ejections of 2010 May 23–24 as revealed by combined in situ measurements and heliospheric imaging. ApJ 759: 68. DOI: 10.1088/0004-637X/759/1/68. [CrossRef] [Google Scholar]
- Lugaz N, Farrugia CJ, Manchester WB IV, Schwadron N. 2013. The interaction of two coronal mass ejections: Influence of relative orientation. ApJ 778: 20. DOI: 10.1088/0004-637X/778/1/20. [NASA ADS] [CrossRef] [Google Scholar]
- Lugaz N, Temmer M, Wang Y, Farrugia CJ. 2017. The interaction of successive coronal mass ejections: A review. Sol Phys 292: 64. DOI: 10.1007/s11207-017-1091-6. [NASA ADS] [CrossRef] [Google Scholar]
- Manchester WB, Kozyra JU, Lepri ST, Lavraud B. 2014. Simulation of magnetic cloud erosion during propagation. J Geophys Res 119: 5449. DOI: 10.1002/2015JA021415. [CrossRef] [Google Scholar]
- Mihalas D. 1978. Stellar atmospheres, 2nd edn. W. H. Freeman and Co, San Francisco. [Google Scholar]
- Mishra W, Srivastava N, Chakrabarty D. 2015. Kinematics of interacting CMEs of 25 and 28 September 2012. Sol Phys 290: 527. DOI: 10.1002/2015JA021415. [CrossRef] [Google Scholar]
- Niembro T, Cantó J, Lara A, Gonzalez RF. 2015. An analytical model of interplanetary coronal mass ejection interactions. ApJ 811: 69. DOI: 10.1088/0004-637X/811/1/69. [NASA ADS] [CrossRef] [Google Scholar]
- Nieves-Chinchilla T, Linton MG, Hidalgo MA, Vourlidas A, Savani NP, Szabo A, Farrugia C, Yu W. 2016. A circular-cylindrical flux-rope analytical model for magnetic clouds. ApJ 823: 27. DOI: 10.3847/0004-637X/823/1/27. [NASA ADS] [CrossRef] [Google Scholar]
- Nieves-Chinchilla T, Vourlidas A, Raymond JC, Linton MG, Al-haddad N, Savani NP, Szabo A, Hidalgo MA. 2018. Understanding the internal magnetic field configurations of ICMEs using more than 20 years of wind observations. Sol Phys 293: 25. DOI: 10.1007/s11207-018-1247-z. [CrossRef] [Google Scholar]
- Odstrčil D, Pizzo VJ. 1999. Three-dimensional propagation of CMEs in a structured solar wind flow: 1. CME launched within the streamer belt. J Geophys Res 104: 483. DOI: 10.1029/1998JA900019. [CrossRef] [Google Scholar]
- Owens MJ, Arge CN, Spence HE, Pembroke A. 2005. An event-based approach to validating solar wind speed predictions: High-speed enhancements in the Wang-Sheeley-Arge model. J Geophys Res 110: A12. DOI: 10.1029/2005JA011343. [Google Scholar]
- Pizzo VJ. 1985. Interplanetary shocks on the large scale – A retrospective on the last decade’s theoretical efforts. Wash DC Am Geophys Union Geophys Monogr Ser 35: 51. DOI: 10.1029/GM035p0051. [Google Scholar]
- Prise AJ, Harra LK, Matthews SA, Arridge CS, Achilleos N. 2015. Analysis of a coronal mass ejection and corotating interaction region as they travel from the Sun passing Venus, Earth, Mars, and Saturn. J Geophys Res 120: 1566. DOI: 10.1002/2014JA020256. [CrossRef] [Google Scholar]
- Raga AC, Navarro-Gonzalez R, Villagran-Muniz M. 2000. A new, 3D adaptive grid code for astrophysical and geophysical gasdynamics. Rev Mex Astron Astrofis 36: 67. [Google Scholar]
- Riley P, Linker JA, Lionello R, Mikic Z, Odstrcil D, et al. 2004. Fitting flux ropes to a global MHD solution: A comparison of techniques. J Atmos Sol-Terr Phys 66: 15. DOI: 10.1016/j.jastp.2004.03.019. [Google Scholar]
- Schwenn R, dal Lago A, Huttunen E, Gonzalez W. 2005. The association of CMEs their counterparts near the Earth. Ann Geophys 23: 1033. DOI: 10.5194/angeo-23-1033-2005. [Google Scholar]
- Shen F, Feng XS, Wang Y, Wu ST, Song WB, Guo JP, Zhou YF. 2011. Three-dimensional MHD simulation of two coronal mass ejections’ propagation and interaction using a successive magnetized plasma blobs model. J Geophys Res 116: A09103. DOI: 10.1029/2011JA016584. [Google Scholar]
- Shen F, Shen C, Wang Y, Feng X, Xiang C. 2013. Could the collision of CMEs in the heliosphere be superelastic? Validation through three dimensional simulations. Geophys Res Lett 40: 1457. DOI: 10.1002/grl.50336. [Google Scholar]
- Siscoe G, Odstrcil D. 2008. Ways in which ICME sheaths differ from magnetosheaths. J Geophys Res 113: A00B07. DOI: 10.1029/2008JA013142. [Google Scholar]
- Stewart P. 1974. Strong wave propagation in a magnetized plasma. A&A 34: 463. [Google Scholar]
- Strong KT, Saba JLR, Haisch BM, Schmelz JT. 1999. The many faces of the Sun: A summary of the results from NASA’s Solar Maximum Mission. DOI: 10.1007/978-1-4612-1442-7. [Google Scholar]
- Temmer M, Rollett T, Mostl C, Veronig AM, Vršnak B, Odstrcil D. 2011. Influence of the ambient solar wind flow on the propagation behavior of interplanetary coronal mass ejections. ApJ 743: 101. DOI: 10.1088/0004-637X/743/2/101. [NASA ADS] [CrossRef] [Google Scholar]
- Temmer M, Vršnak B, Rollett T, Bein B, de Koning CA, et al. 2012. Characteristics of kinematics of a coronal mass ejection during the 2010 August 1 CME-CME interaction event. ApJ 749: 57. DOI: 10.1088/0004-637X/749/1/57. [Google Scholar]
- Vourlidas A, Howard RA, Esfandiari E, Patsourakos S, Yashiro S, Michalek G. 2010. Comprehensive analysis of coronal mass ejection mass and energy properties over a full solar cycle. ApJ 722: 2. DOI: 10.1088/0004-637X/722/2/1522. [NASA ADS] [CrossRef] [Google Scholar]
- Vršnak B. 2001. Dynamics of solar coronal eruptions. J Geophys Res 106: A11. DOI: 10.1029/2000JA004007. [Google Scholar]
- Vršnak B, Gopalswamy N. 2002. Influence of the aerodynamic drag on the motion of interplanetary ejecta. J Geophys Res 107: 1019. DOI:10.1029/2001JA000120. [Google Scholar]
- Vršnak B, Ruždjak D, Sudar D, Gopalswamy N. 2004. Kinematics of coronal mass ejections between 2 and 30 solar radii. What can be learned about forces governing the eruption? A&A 423: 717. DOI:10.1051/0004-6361:20047169. [Google Scholar]
- Vršnak B, Zic T, Falkenberg TV, Mostl C, Vennerstrom S, Vrbanec D. 2010. The role of aerodynamic drag in propagation of interplanetary coronal mass ejections. A&A 512: AA43. DOI: 10.1051/00046361/200913482. [CrossRef] [EDP Sciences] [Google Scholar]
- Vršnak B, Zic T, Vrbanec D, Temmer M, Rollett T, et al. 2013. Propagation of interplanetary coronal mass ejections: The Drag-Based model. Sol Phys 285: 295. DOI: 10.1007/s11207-012-0035-4. [NASA ADS] [CrossRef] [Google Scholar]
- Vršnak B, Temmer M, Zic T, Taktakishvili A, Dumbovic M, Mostl C, Veronig AM, Mays ML, Odstrčil D. 2014. Heliospheric propagation of coronal mass ejections: Comparison of numerical WSA-ENLIL+Cone model and Analytical Drag-based model. ApJS 213: 21. DOI: 10.1088/0067-0049/213/2/21. [Google Scholar]
- Wood BE, Muller H-R, Zank GP, Linsky JL. 2002. Measured mass-loss rates of solar-like stars as a function of age and activity. ApJ 574: 412. DOI: 10.1086/340797. [NASA ADS] [CrossRef] [Google Scholar]
- Xie H, Ofman L, Lawrence G. 2004. Multiple ions resonant heating and acceleration by Alfvn/cyclotron fluctuations in the corona and the solar wind. J Geophys Res 109: A8. DOI: 10.1029/2004JA010501. [Google Scholar]
- Xiong M, Zheng H, Wu ST, Wang Y, Wang S. 2007. Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness. J Geophys Res 112: A11. DOI: 10.1029/2007JA012320. [NASA ADS] [CrossRef] [Google Scholar]
- Yashiro S, Gopalswamy N, Michalek G, St. Cyr OC, Plunkett SP, Rich NB, Howard RA. 2004. A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J Geophys Res 109: A7. DOI: 10.1029/2003JA010282. [Google Scholar]
- Zhao X, Dryer M. 2014. Current status of CME/shock arrival time prediction. Space Weather 12: 448. DOI: 10.1002/2014SW001060. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.