Open Access
J. Space Weather Space Clim.
Volume 9, 2019
Article Number A5
Number of page(s) 17
Published online 31 January 2019
  • Astafyeva E, Yasyukevich Y, Maksikov A, Zhivetiev I. 2014. Geomagnetic storms, super-storms, and their impacts on GPS-based navigation systems. Space Weather 12: 508–525. DOI: 10.1002/2014SW001072. [CrossRef] [Google Scholar]
  • Banville S, Sieradzki R, Hoque M, Wezka K, Hadas T. 2017. On the estimation of higher-order ionospheric effects in precise point positioning. GPS Solut 21(4): 1817–1828. DOI: 10.1007/s10291-017-0655-0. [CrossRef] [Google Scholar]
  • Belehaki A, Kutiev I, Marinov P, Tsagouri I, Koutroumbas K, Elias P. 2017. Ionospheric electron density perturbations during the 7–10 March 2012 geomagnetic storm period. Adv Space Res 59(4): 1041–1056. DOI: 10.1016/j.asr.2016.11.031. [CrossRef] [Google Scholar]
  • Bowline MD, Sojka JJ, Schunk RW. 1996. Relationship of theoretical patch climatology to polar cap patch observations. Radio Sci 31: 635–644. DOI: 10.1029/96RS00236. [CrossRef] [Google Scholar]
  • Branzanti M, Colosimo G, Crespi M, Mazzoni A. 2013. GPS near-real-time coseismic displacements for the Great Tohoku-Oki Earthquake. IEEE Geosci Remote Sens Lett 10(2): 372–376. DOI: 10.1109/LGRS.2012.2207704. [CrossRef] [Google Scholar]
  • Burston R, Mitchell C, Astin I. 2016. Polar cap plasma patch primary linear instability growth rates compared. J Geophys Res Space Phys 121: 3439–3451. DOI: 10.1002/2015JA021895. [CrossRef] [Google Scholar]
  • Carlson HC. 2012. Sharpening our thinking about polar cap ionospheric patch morphology, research, and mitigation techniques. Radio Sci 47: RS0L21. DOI: 10.1029/2011RS004946. [CrossRef] [Google Scholar]
  • Cherniak I, Zakharenkova I, Redmon R. 2015. Dynamics of the high-latitude ionospheric irregularities during the March 17, 2015 St. Patrick’s Day storm: ground-based GPS measurements. Space Weather 13: 585–597. DOI: 10.1002/2015SW001237. [CrossRef] [Google Scholar]
  • Cherniak I, Zakharenkova I. 2017. New advantages of the combined GPS and GLONASS observations for high-latitude ionospheric irregularities monitoring: case study of June 2015 geomagnetic storm. Earth Planets Space 69. DOI:10.1186/s40623-017-0652-0. [CrossRef] [Google Scholar]
  • Clausen LBN, Baker JBH, Ruohoniemi JM, Milan SE, Anderson BJ. 2012. Dynamics of the region 1 Birkeland current oval derived from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). J Geophys Res 117: A06233. DOI: 10.1029/2012JA017666. [Google Scholar]
  • Crowley G. 1996. Critical review of ionospheric patches and blobs. In: Review of Radio Science 1993–1996, Stone WR (Ed.), Oxford University Press, New York. pp. 619–648. [Google Scholar]
  • Durgonics T, Komjathy A, Verkhoglyadova O, Shume EB, Benzon HH, Mannucci AJ, Butala MD, Høeg P, Langley RB. 2017. Multiinstrument observations of a geomagnetic storm and its effects on the Arctic ionosphere: A case study of the 19 February 2014 storm. Radio Sci 52: 146–165. DOI: 10.1002/2016RS006106. [CrossRef] [Google Scholar]
  • Feltens J. 2007. Development of a new three-dimensional mathematical ionosphere model at European Space Agency/European Space Operations Centre. Space Weather 5: S12002. DOI: 10.1029/2006SW000294. [CrossRef] [Google Scholar]
  • Forte B. 2007. On the relationship between the geometrical control of scintillation indices and the data detrending problems observed at high latitudes. Ann Geophys 50: 699–706. DOI: 10.4401/ag-3051. [Google Scholar]
  • Grant IF, MacDougall JW, Ruohoniemi JM, Bristow WA, Sofko GJ, Koehler JA, Danskin D, Andre D. 1995. Comparison of plasma flow velocities determined by the ionosonde Doppler drift technique, SuperDARN radars, and patch motion. Radio Sci 30: 1537–1549. [CrossRef] [Google Scholar]
  • Gopalswamy N, Tsurutani B, Yan Y. 2015. Short-term variability of the Sun-Earth system: an overview of progress made during the CAWSES II period. Prog Earth Planet Sci 2: 13. DOI: 10.1186/s40645-015-0043-8. [CrossRef] [Google Scholar]
  • Hairston MR, Heelis RA. 1995. Response time of the polar ionospheric convection pattern to changes in the north-south direction of the IMF. Geophys Res Lett 22: 631–634. [CrossRef] [Google Scholar]
  • Hernández-Pajares M, Miguel J, Sanz J, Aragón-Àngel À, Garcia-Rigo A, Salazar D, Escudero M. 2011. The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques. J Geod 85(12): 887–907. DOI: 10.1007/s00190-011-0508-5. [CrossRef] [Google Scholar]
  • Holzworth RH, Meng C-I. 1975. Mathematical Representation of the Auroral Oval. Geophys Res Lett 2: 377–380. [CrossRef] [Google Scholar]
  • Horvath I, Lovell BC. 2014. Large plasma density enhancements occurring in the northern polar region during the 6 April 2000 superstorm. J Geophys Res Space Phys 119: 4805–4818. DOI: 10.1002/2014JA019917. [CrossRef] [Google Scholar]
  • Hosokawa K, Taguchi S, Ogawa Y. 2016. Edge of polar cap patches. J Geophys Res Space Phys 121: 3410–3420. DOI: 10.1002/2015JA021960. [CrossRef] [Google Scholar]
  • Jakowski N, Mayer C, Hoque MM, Wilken V. 2011. Total electron content models and their use in ionosphere monitoring. Radio Sci 46: RS0D18. DOI: 10.1029/2010RS004620. [CrossRef] [Google Scholar]
  • Jayachandran PT, Langley RB, MacDougall JW, Mushini SC, Pokhotelov D, et al. 2009. The Canadian high arctic ionospheric network (CHAIN). Radio Sci 44: RS0A03. DOI: 10.1029/2008RS004046. [CrossRef] [Google Scholar]
  • Jin Y, Moen JI, Miloch WJ. 2014. GPS scintillation effects associated with polar cap patches and substorm auroral activity: direct comparison. J Space Weather Space Clim 4: A23. DOI: 10.1051/swsc/2014019. [CrossRef] [EDP Sciences] [Google Scholar]
  • Kitamura N, Nishimura Y, Chandler MO, Moore TE, Terada N, Ono T, Shinbori A, Kumamoto A. 2012. Storm-time electron density enhancement in the cleft ion fountain. J Geophys Res 117: A11212. DOI: 10.1029/2012JA017900. [Google Scholar]
  • Komjathy A, Sparks L, Wilson BD, Mannucci AJ. 2005. Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms. Radio Sci 40: RS6006. DOI: 10.1029/2005RS003279. [CrossRef] [Google Scholar]
  • Krankowski A, Shagimuratov II, Baran LW, Epishov II, Tepenitzyna NJ. 2006. The occurrence of polar cap patches in TEC fluctuation using GPS measurements. Adv Space Res 38(11): 2601–2609. DOI: 10.1016/j.asr.2005.12.006. [CrossRef] [Google Scholar]
  • Kullen A, Brittnacher M, Cumnock JA, Blomberg LG. 2002. Solar wind dependence of the occurrence and motion of polar auroral arcs: A statistical study. J Geophys Res 107: A11. DOI: 10.1029/2002JA009245. [CrossRef] [Google Scholar]
  • Li Z, Yuan Y, Wang N, Hernandez-Pajares M, Huo X. 2015. SHPTS: towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions. J Geod 89: 331–345. DOI: 10.1007/s00190-014-0778-9. [CrossRef] [Google Scholar]
  • Li G, Ning B, Ren Z, Hu L. 2010. Statistics of GPS ionospheric scintillation and irregularities over polar regions at solar minimum. GPS Solut 14. DOI: 10.1007/s10291-009-0156-x. [Google Scholar]
  • Liu J, Chen R, Kuusniemi H, Wang Z, Zhang H, Yang J. 2010. A Preliminary study on mapping the regional ionospheric TEC using a spherical cap harmonic model in high latitudes and the arctic region. J Global Positioning Syst 9: 22–32. DOI: 10.5081/jgps.9.1.22. [CrossRef] [Google Scholar]
  • Liu Z. 2011. A new automated cycle slip detection and repair method for a single dual-frequency GPS receiver. J Geod 85(3): 171–183. DOI: 10.1007/s00190-010-0426-y. [CrossRef] [Google Scholar]
  • Mitchell CN, Alfonsi L, De Franceschi G, Lester M, Romano V, Wernik AW. 2005. GPS TEC and scintillation measurements from the polar ionosphere during the October 2003 storm. Geophys Res Lett 32(12): L12S03. DOI: 10.1029/2004GL021644. [CrossRef] [Google Scholar]
  • Ning Y, Tang J. 2018. Study of ionospheric disturbances over the China mid- and low-latitude region with GPS observations. Ann Geophys 36: 81–89. DOI: 10.5194/angeo-36-81-2018. [CrossRef] [Google Scholar]
  • Noja M, Stolle C, Park J, Lьhr H. 2013. Long-term analysis of ionospheric polar patches based on CHAMP TEC data. Radio Sci 48(3): 289–301. DOI: 10.1002/rds.20033. [CrossRef] [Google Scholar]
  • Østgaard N, Detrick DL, Rosenberg TJ, Vondrak RR, Frey HU, Mende SB, Hland S, Stadsnes J. 2003. High-latitude dayside energetic precipitation and IMF Bz rotations. J Geophys Res 108: 8013. DOI: 10.1029/2002JA009350. [CrossRef] [Google Scholar]
  • Park J, Helmboldt J, Grejner-Brzezinska DA, von Frese RBR, Wilson TL. 2013. Ionospheric observations of underground nuclear explosions (UNE) using GPS and the very large array. Radio Sci 48: 463–469. DOI: 10.1002/rds.20053. [CrossRef] [Google Scholar]
  • Paziewski J. 2015. Precise GNSS single epoch positioning with multiple receiver configuration for medium-length baselines: methodology and performance analysis. Meas Sci Technol 26(3): 035002. DOI: 10.1088/0957-0233/26/3/035002. [CrossRef] [Google Scholar]
  • Pi X, Mannucci AJ, Lindqwister UJ, Ho CM. 1997. Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophys Res Lett 24. DOI: 10.1029/97GL02273. [Google Scholar]
  • Pi X, Mannucci AJ, Valant-Spaight B, Bar-Sever Y, Romans LJ, Skone S, Sparks L, Hall Martin G. 2013. Observations of global and regional ionospheric irregularities and scintillation using GNSS tracking networks, Proceedings of the ION 2013 Pacific PNT Meeting, Honolulu, Hawaii. [Google Scholar]
  • Prikryl P, Jayachandran PT, Mushini SC, Richardson IG. 2014. High-latitude GPS phase scintillation and cycle slips during high-speed solar wind streams and interplanetary coronal mass ejections: a superposed epoch analysis. Earth Planets Space 66: 62. DOI: 10.1186/1880-5981-66-62. [Google Scholar]
  • Prikryl P, Jayachandran PT, Chadwick R, Kelly TD. 2015a. Climatology of GPS phase scintillation at northern high latitudes for the period from 2008 to 2013. Ann Geophys 33: 531–545. DOI: 10.5194/angeo-33-531-2015. [CrossRef] [Google Scholar]
  • Prikryl P, Ghoddousi-Fard R, Thomas EG, Ruohoniemi JM, Shepherd SG, et al. 2015b. GPS phase scintillation at high latitudes during geomagnetic storms of 7–17 March 2012 – part 1: the North American sector. Ann Geophys 33: 637–656. DOI: 10.5194/angeo-33-637-2015. [CrossRef] [Google Scholar]
  • Ren X, Zhang X, Xie W, Zhang K, Yuan Y, Li X. 2016. Global ionospheric modelling using multi-GNSS: BeiDou, Galileo, GLONASS and GPS. Sci Rep 6: 33499. DOI: 10.1038/srep33499. [CrossRef] [Google Scholar]
  • Rideout W, Coster A. 2006. Automated GPS processing for global total electron content data. GPS Solut 10(3): 219–228. DOI: 10.1007/s10291-006-0029-5. [CrossRef] [Google Scholar]
  • Ryu K, Parrot M, Kim SG, Jeong KS, Chae JS, Pulinets S, Oyama K-I. 2014. Suspected seismo-ionospheric coupling observed by satellite measurements and GPS TEC related to the M7.9 Wenchuan earthquake of 12 May 2008. J Geophys Res Space Phys 119: 10305–10323. DOI: 10.1002/2014JA020613. [CrossRef] [Google Scholar]
  • Shepherd SG. 2014. Altitude-adjusted corrected geomagnetic coordinates: Definition and functional approximations. J Geophys Res Space Phys 119: 7501–7521. DOI: 10.1002/2014JA020264. [CrossRef] [Google Scholar]
  • Sieradzki R, Cherniak Iu, Krankowski A. 2013. Near-real time monitoring of the TEC fluctuations over the northern hemisphere using GNSS permanent networks. Adv Space Res 52(3): 391–402. DOI: 10.1016/j.asr.2013.03.036. [CrossRef] [Google Scholar]
  • Sieradzki R. 2015. An analysis of selected aspects of irregularities oval monitoring using GNSS observations. J Atmos Sol Terr Phys 129: 87–98. DOI: 10.1016/j.jastp.2015.04.017. [CrossRef] [Google Scholar]
  • Sieradzki R, Paziewski J. 2016. Study on reliable GNSS positioning with intense TEC fluctuations at high latitudes. GPS Solut 20(3): 553–563. DOI: 10.1007/s10291-015-0466-0. [CrossRef] [Google Scholar]
  • Sojka JJ, Bowline MD, Schunk RW. 1994. Patches in the polar-cap ionosphere: UT and seasonal dependence. J Geophys Res 99: 14959–14970. [CrossRef] [Google Scholar]
  • Sojka JJ, Subramanium MV, Zhu L, Schunk RW. 1998. Gradient-drift instability growth rates from global scale modeling of the polar ionosphere. Radio Sci 33(6): 1915–1928. [CrossRef] [Google Scholar]
  • Spicher A, Clausen LBN, Miloch WJ, Lofstad V, Jin Y, Moen JI. 2017. Interhemispheric study of polar cap patch occurrence based on Swarm in situ data. J Geophys Res Space Phys 122: 3837–3851. DOI: 10.1002/2016JA023750. [CrossRef] [Google Scholar]
  • Van der Meeren C, Oksavik K, Lorentzen D, Moen JI, Romano V. 2014. GPS scintillation and irregularities at the front of an ionization tongue in the nightside polar ionosphere. J Geophys Res Space Phys 119: 8624–8636. DOI: 10.1002/2014JA020114. [CrossRef] [Google Scholar]
  • Verkhoglyadova OP, Tsurutani BT, Mannucci AJ, Mlynczak MG, Hunt LA, Paxton LJ. 2014. Ionospheric TEC, thermospheric cooling and Ʃ[O/N2] compositional changes during the 6–17 March 2012 magnetic storm interval (CAWSES II). J Atmos Sol Terr Phys 115–116: 41–51. DOI: 10.1016/j.jastp.2013.11.009. [CrossRef] [Google Scholar]
  • Wautelet G, Warnant R. 2014. Climatological study of ionospheric irregularities over the European mid-latitude sector with GPS. J Geod 88(3): 223–240. DOI: 10.1007/s00190-013-0678-4. [CrossRef] [Google Scholar]
  • Wilgan K, Rohm W, Bosy J. 2015. Multi-observation meteorological and GNSS data comparison with numerical weather prediction model. Atmos Res 156: 29–42. DOI: 10.1016/j.atmosres.2014.12.011. [CrossRef] [Google Scholar]
  • Tsagouri I, Belehaki A. 2015. Ionospheric forecasts for the European region for space weather applications. J Space Weather Space Clim 5: A9. DOI: 10.1051/swsc/2015010. [Google Scholar]
  • Tsurutani BT, Echer E, Shibata K, Verkhoglyadova OP, Mannucci AJ, Gonzalez WD, Kozyra JU, Paetzold M. 2014. The interplanetary causes of geomagnetic activity during the 7–17 March 2012 interval: a CAWSES II overview. J Space Weather Space Clim 4: A02. DOI: 10.1051/swsc/2013056. [CrossRef] [Google Scholar]
  • Xiong C, Lühr H, Wang H, Johnsen MG. 2014. Determining the boundaries of the auroral oval from CHAMP field aligned current signatures – Part 1. Ann Geophys 32: 609–622. DOI: 10.5194/angeo-32-609-2014. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.