Planetary Space Weather
Open Access
Research Article
J. Space Weather Space Clim.
Volume 9, 2019
Planetary Space Weather
Article Number A3
Number of page(s) 11
Published online 14 January 2019
  • Auster HU, Apathy I, Berghofer G, Fornacon KH, Remizov A, et al. 2015. The nonmagnetic nucleus of comet 67P/Churyumov-Gerasimenko. Science 349: 6247, aaa5102. DOI: 10.1126/science.aaa5102. [NASA ADS] [CrossRef] [Google Scholar]
  • Balsiger H, Altwegg K, Bochsler P, Eberhardt P, Fischer J, et al. 2007. Rosina – Rosetta orbiter spectrometer for ion and neutral analysis. Space Sci Rev 128: 745–801. DOI: 10.1007/s11214-006-8335-3. [CrossRef] [Google Scholar]
  • Bieler A, Altwegg K, Balsiger H, Belthelier JJ, Calmonte U, et al. 2015. Comparison of 3D kinetic and hydrodynamic models to ROSINA-COPS measurements of the neutral coma of 67P/Churyumov-Gerasimenko. A&A 583: A7. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Boudouridis A, Zesta E, Lyons R, Anderson PC, Lummerzheim D. 2003. Effect of solar wind pressure pulses on the size and strength of the auroral oval. J Geophys Res 108: 8012. DOI: 10.1029/2002JA009373. [CrossRef] [Google Scholar]
  • Clarke JT, Nichols J, Gérard JC, Grodent D, Hansen KC, et al. 2009. Response of Jupiter’s and Saturn’s auroral activity to the solar wind. J Geophys Res 114: A05210. DOI: 10.1029/2008JA013694. [Google Scholar]
  • Crary FJ, Clarke JT, Dougherty MK, Hanlon PG, Hansen KC, et al. 2005. Solar wind dynamic pressure and electric field as the main factors controlling Saturn's aurorae. Nature 433: 720–722. DOI: 10.1038/nature03333. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Cravens TE. 1986. The physics of the cometary contact surface. In: ESA SP-250: ESLAB Symposium on the Exploration of Halley’s Comet, Battrick B, Rolfe EJ, Reinhard R (Eds.), ESA, Noordwijk, The Netherlands. p. 241. [Google Scholar]
  • Cravens TE. 1987. Theory and observations of cometary ionospheres. Adv Space Res 12: 147–158. [Google Scholar]
  • Cravens TE. 1991. Plasma processes in the inner coma. Int Astron Union Colloq 116: 121. DOI: 10.1017/S0252921100012884. [CrossRef] [Google Scholar]
  • Crider DH, Vignes D, Krymskii AM, Breus TK, Ness NF, et al. 2003. A proxy for determining solar wind dynamic pressure at Mars using Mars Global Surveyor data. J Geophys Res 108(A12): 1461. DOI: 10.1029/2003JA009875. [CrossRef] [Google Scholar]
  • Dósa M, Opitz A, Dálya Z, Szegö K. 2018. Magnetic lasso: an enhanced ballistic solar wind propagation method. Sol Phys 293: 127. DOI: 10.1007/s11207-018-1340-3. [CrossRef] [Google Scholar]
  • Dubinin E, Sauer K, Lundin R, Norberg O, Trotignon JG, et al. 1996. Plasma characteristics of the boundary layer in the Martian magnetosphere. J Geophys Res 101(A12): 27061–27075. DOI: 10.1029/96JA02021. [CrossRef] [Google Scholar]
  • Edberg NJT, Eriksson AI, Odelstad E, Henri P, Lebreton JP, et al. 2015. Spatial distribution of low-energy plasma around comet 67P/CG from Rosetta measurements. Geophys Res Lett 42: 4263–4269. DOI: 10.1002/2015GL064233. [CrossRef] [Google Scholar]
  • Edberg NJT, Alho M, André M, Andrews DJ, Behar E, et al. 2016. CME impact on comet 67P/Churyumov-Gerasimenko. MNRAS 462: S45–S56. DOI: 10.1093/mnras/stw2112. [CrossRef] [Google Scholar]
  • Galand M, Héritier KL, Odelstad E, Henri P, Broiles TW, et al. 2016. Ionospheric plasma of comet 67P probed by Rosetta at 3 AU from the Sun. MNRAS 462: S331–S351. DOI: 10.1093/mnras/stw2891. [CrossRef] [Google Scholar]
  • Galeev AA. 1986. Theory and observations of solar wind/cometary plasma interaction processes. In: ESA Proceedings of the 20th ESLAB Symposium on the Exploration of Halley’s Comet, 27–31 October 1986, Heidelberg, Germany, Vol. 1, pp. 3–17. [Google Scholar]
  • Gan L, Cravens TE. 1990. Electron energetics in the inner coma of comet Halley. J Geophys Res 95(A5): 6285–6303. DOI: 10.1029/JA095iA05p06285. [Google Scholar]
  • Glassmeier KH, Boehnhardt H, Koschny D, Kührt E, Richter I. 2007a. The Rosetta mission: Flying towards the origin of the Solar System. Space Sci Rev 128: 1–21. [CrossRef] [Google Scholar]
  • Glassmeier KH, Richter I, Diedrich A, Musmann G, Auster U, et al. 2007b. RPC-MAG the fluxgate magnetometer in the Rosetta Plasma Consortium. Space Sci Rev 128: 649–670. [CrossRef] [Google Scholar]
  • Glassmeier KH. 2017. Interaction of the solar wind with comets: a Rosetta perspective. Philos Trans Ser A Math Phys Eng Sci 375: 2097. [Google Scholar]
  • Goetz C, Koenders C, Hansen KC, Burch J, Carr C, et al. 2016. Structure and evolution of the diamagnetic cavity at comet 67P/Churyumov–Gerasimenko. MNRAS 462(Suppl_1): S459–S467. DOI: 10.1093/mnras/stw3148. [Google Scholar]
  • Goetz C, Volwerk M, Richter I, Glassmeier KH. 2017. Evolution of the magnetic field at comet 67P/Churyumov-Gerasimenko. MNRAS 469(Suppl_2): S268–S275. [CrossRef] [Google Scholar]
  • Hajra R, Henri P, Vallières X, Moré J, Gilet N, et al. 2018. Dynamic unmagnetized plasma in the diamagnetic cavity around comet 67P/Churyumov–Gerasimenko. MNRAS 475(3): 4140–4147. DOI: 10.1093/mnras/sty094. [NASA ADS] [CrossRef] [Google Scholar]
  • Hansen C, Altwegg K, Berthelier JJ, Bieler A, Biver N, et al. 2016. Evolution of water production of 67P/Churyumov–Gerasimenko: an empirical model and a multi-instrument study. MNRAS 462: S491–S506. DOI: 10.1093/mnras/stw2413. [Google Scholar]
  • Hässig M, Altwegg K, Balsiger H, Bar-Nun A, Berthelier JJ, et al. 2015. Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko. Science 347: aaa0276. [Google Scholar]
  • Ip WH, Axford W. 1987. The formation of a magnetic-field-free cavity at comet Halley. Nature 325: 418. DOI: 10.1038/325418a0. [NASA ADS] [CrossRef] [Google Scholar]
  • Luhmann JG, Elphic RC, Russell CT, Mihalov JD, Wolfe JH. 1980. Observations of large scale steady magnetic fields in the dayside Venus ionosphere. Geophys Res Lett 7: 917–920. DOI: 10.1029/GL007i011p00917. [CrossRef] [Google Scholar]
  • Madanian H, Cravens TE, Rahmati A, Goldstein B, Burch J, et al. 2016a. Suprathermal electrons near the nucleus of comet 67P/Churyumov-Gerasimenko at 3 AU: Model comparisons with Rosetta data. J Geophys Res 121: 5815–5836. DOI: 10.1002/2016JA022610. [CrossRef] [Google Scholar]
  • Madanian H, Cravens TE, Burch J, Goldstein R, Rubin M, et al. 2016b. Plasma environment around comet 67P/Churyumov-Gerasimenko at perihelion: Model comparison with Rosetta data. Astron J 153: 30. DOI: 10.3847/1538-3881/153/1/30. [CrossRef] [Google Scholar]
  • Mandt KE, Eriksson A, Edberg NJT, Koenders C, Broiled T. 2016. RPC observation of the development and evolution of plasma interaction boundaries at 67P/Churyumov-Gerasimenko. MNRAS 462: S9–S22. DOI: 10.1093/mnras/stw1736. [NASA ADS] [CrossRef] [Google Scholar]
  • Mendis DA, Houpis HLF, Marconi ML. 1985. The physics of comets. Fundam Cosm Phys 10(1–4): 380. p. 2. ISSN 0094-5846. [Google Scholar]
  • Nemeth Z, Burch J, Goetz C, Goldstein R, Henri P, et al. 2016. Charged particle signatures of the diamagnetic cavity of comet 67P/Churyumov–Gerasimenko. MNRAS 462(Suppl_1): S415–S421. DOI: 10.1093/mnras/stw3028. [Google Scholar]
  • Neubauer FM, Glassmeier KH, Pohl M, Raeder J, Acuna MH, et al. 1986. First results from the Giotto magnetometer experiment at comet Halley. Nature 321: 352. [NASA ADS] [CrossRef] [Google Scholar]
  • Opitz A, Karrer R, Wurz P, Galvin AB, Bochsler P, et al. 2009. Temporal evolution of the solar wind bulk velocity at solar minimum by correlating the STEREO A and B plastic measurements. Sol Phys 256: 365. DOI: 10.1007/s11207-008-9304-7. [Google Scholar]
  • Richter I, Koenders C, Auster HU, Goetz C, et al. 2015. Observation of a new type of low-frequency waves at comet 67P/Churyumov-Gerasimenko. Ann Geophys 33: 1031–1036. DOI: 10.5194/angeo-33-1031-2015. [CrossRef] [Google Scholar]
  • Sibeck DG, Lopez RE, Roelof EC. 1991. Solar wind control of the magnetopause shape, location, and motion. J Geophys Res 96(A4): 5489–5495. DOI: 10.1029/90JA02464. [CrossRef] [Google Scholar]
  • Timar A, Nemeth Z, Szego K, Dosa M, Opitz A, et al. 2017. Modelling the size of the very dynamic diamagnetic cavity of comet 67P/Churyumov–Gerasimenko. MNRAS 469(Suppl_2): S723–S730. DOI: 10.1093/mnras/stx2628. [Google Scholar]
  • Vennerstrom S, Olsen N, Purucker M, Acuña MH, Cain JC. 2003. The magnetic field in the pile-up region at Mars, and its variation with the solar wind. Geophys Res Lett 30: 1369. DOI: 10.1029/2003GL016883. [CrossRef] [Google Scholar]
  • Vigren E, Altwegg K, Edberg NJT, Eriksson AI, Galand M, et al. 2016. Model-observation comparisons of electron number densities in the coma of 67P/Churyumov-Gerasimenko during 2015 January. Astron J 152: 59 (8 pp). DOI: 10.3847/0004-6256/152/3/59. [CrossRef] [Google Scholar]
  • Vigren E, Eriksson AI. 2017. A 1D model of radial ion motion interrupted by ion-neutral interactions in a cometary coma. Astron J 153: 4. [Google Scholar]
  • Wedlund CS, Alho M, Gronoff G, Kallio E, Gunell H, et al. 2017. Hybrid modelling of cometary plasma environments: I. Impact of photoionisation, charge exchange, and electron ionisation on bow shock and cometopause at 67P/Churyumov-Gerasimenko. A&A 604: A73. DOI: 10.1051/0004-6361/201730514. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Wu ZJ. 1987. Calculation of the shape of the contact surface at comet Halley. In: ESA proceedings of the International Symposium on the Diversity and Similarity of Comets 6–9 April 1987, Brussels, Belgium, 69–73. [Google Scholar]
  • Zieger B, Hansen KC. 2008. Statistical validation of a solar wind propagation model from 1 to 10 AU. J Geophys Res, 113, A08107. DOI: 10.1029/2008JA013046. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.