Issue
J. Space Weather Space Clim.
Volume 9, 2019
Planetary Space Weather
Article Number A2
Number of page(s) 19
DOI https://doi.org/10.1051/swsc/2018051
Published online 14 January 2019
  • Agostinelli S, Allison J, Amako KA, Apostolakis J, Araujo H, et al. 2003. GEANT4 – A simulation toolkit. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 506(3): 250–303. [CrossRef] [Google Scholar]
  • Allison J, Amako K, Apostolakis J, Arce P, Asai M, et al. 2016. Recent developments in Geant4. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 835: 186–225. [Google Scholar]
  • Allkofer OC. 1975. Introduction to cosmic radiation. NASA STI/Recon Tech Rep A 75. [Google Scholar]
  • Andersson B, Gustafson G, Nilsson-Almqvist B. 1987. A model for low-pT hadronic reactions with generalizations to hadron-nucleus and nucleus-nucleus collisions. Nucl Phys B 281(1–2): 289–309. [Google Scholar]
  • Banjac S, Herbst K, Heber B. 2018a. The Atmospheric Radiation Interaction Simulator (AtRIS). J Geophys Res Space Phys 123. DOI: 10.1029/2018JA026042. [Google Scholar]
  • Dartnell L, Desorgher L, Ward J, Coates A. 2007. Modelling the surface and subsurface Martian radiation environment: Implications for astrobiology. Geophys Res Lett 34: L02207. [CrossRef] [Google Scholar]
  • De Angelis G, Wilson J, Clowdsley M, Qualls G, Singleterry R. 2006. Modeling of the Martian environment for radiation analysis. Rad Meas 41(9): 1097–1102. [CrossRef] [Google Scholar]
  • Desorgher L. 2005. PLANETOCOSMICS software user manual. Accessible from the GEANT4/PLANETOCOSMICS web page. [Google Scholar]
  • Ehresmann B, Burmeister S, Wimmer-Schweingruber R, Reitz G. 2011. Influence of higher atmospheric pressure on the Martian radiation environment: Implications for possible habitability in the Noachian epoch. J Geophys Res (Space Phys) 116(A15): 10106. [Google Scholar]
  • Ehresmann B, Hassler D, Zeitlin C, Guo J, Wimmer-Schweingruber R, et al. 2018. Energetic particle radiation environment observed by RAD on the surface of Mars during the September 2017 event. Geophys Res Lett 45(11): 5305–5311. [CrossRef] [Google Scholar]
  • Ehresmann B, Zeitlin C, Hassler DM, Wimmer-Schweingruber RF, Bohm E, et al. 2014. Charged particle spectra obtained with the Mars Science Laboratory Radiation Assessment Detector (MSL/RAD) on the surface of Mars. J Geophys Res Planet 119(3): 468–479. [Google Scholar]
  • Ehresmann B, Zeitlin CJ, Hassler DM, Matthiä D, Guo J, et al. 2017. The charged particle radiation environment on Mars measured by MSL/RAD from November 15, 2015 to January 15, 2016. Life Sci Space Res 14: 3–11. [CrossRef] [Google Scholar]
  • Geant4_Collaboration. 2017. Geant4 physics reference manual 10.4. Accessible from the GEANT4 web page. URL http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/PhysicsListGuide/html/index.html. [Google Scholar]
  • Gieseler J, Heber B. 2016. Spatial gradients of GCR protons in the inner heliosphere derived from Ulysses COSPIN/KET and PAMELA measurements. A&A 589: A32. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Gronoff G, Norman RB, Mertens CJ. 2015. Computation of cosmic ray ionization and dose at Mars. I: A comparison of HZETRN and planetocosmics for proton and alpha particles. Adv Space Res 55(7): 1799–1805. [CrossRef] [Google Scholar]
  • Grotzinger JP, Crisp J, Vasavada AR, Anderson RC, Baker CJ, et al. 2012. Mars Science Laboratory mission and science investigation. Space Sci Rev 170(1–4): 5–56. [NASA ADS] [CrossRef] [Google Scholar]
  • Guo J, Dumbovic M, Wimmer-Schweingruber RF, Temmer M, Lohf H, et al. 2018a. Modeling the evolution and propagation of the 2017 September 9th and 10th CMEs and SEPs arriving at Mars constrained by remote-sensing and in-situ measurement. Space Weather 16: 1156–1169. [NASA ADS] [CrossRef] [Google Scholar]
  • Guo J, Lillis R, Wimmer-Schweingruber RF, Zeitlin C, Simonson P, et al. 2018b. Measurements of Forbush decreases at Mars: Both by MSL on ground and by MAVEN in orbit. A&A 611: A79. [CrossRef] [EDP Sciences] [Google Scholar]
  • Guo J, Slaba TC, Zeitlin C, Wimmer-Schweingruber RF, Badavi FF, et al. 2017a. Dependence of the Martian radiation environment on atmospheric depth: Modelling and measurement. J Geophys Res Planet Sci 122: 329–341, DOI: 10.1002/2016JE005206. [Google Scholar]
  • Guo J, Zeitlin C, Wimmer-Schweingruber R, Hassler DM, Kohler J, Ehresmann B, Bottcher S, Bohm E, Brinza DE. 2017b. Measurements of the neutral particle spectra on Mars by MSL/RAD from 2015-11-15 to 2016-01-15. Life Sci Space Res 14: 12–17. [CrossRef] [Google Scholar]
  • Guo J, Zeitlin C, Wimmer-Schweingruber RF, McDole T, Kiihl P, Appel JC, Matthiä D, Krauss J, Kohler J. 2018c. A generalized approach to model the spectra and radiation dose rate of solar particle events on the surface of Mars. Astron J 155(1): 49. [NASA ADS] [CrossRef] [Google Scholar]
  • Guo J, Zeitlin C, Wimmer-Schweingruber RF, Rafkin S, Hassler DM, et al. 2015. Modeling the variations of dose rate measured by RAD during the First MSL Martian Year: 2012–2014. Astrophys J 810(1): 24. [NASA ADS] [CrossRef] [Google Scholar]
  • Hassler D, Zeitlin C, Wimmer-Schweingruber R, Bottcher S, Martin C, et al. 2012. The radiation assessment detector (RAD) investigation. Space Sci Rev 170(1–4): 503–558. [NASA ADS] [CrossRef] [Google Scholar]
  • Hassler DM, Norbury JW, Reitz G. 2017. Mars Science Laboratory radiation assessment detector (MSL/RAD) modeling workshop proceedings. Life Sci Space Res 14: 1–2. [CrossRef] [Google Scholar]
  • Hassler DM, Zeitlin C, Wimmer-Schweingruber RF, Ehresmann B, Rafkin S, et al. 2014. Mars surface radiation environment measured with the Mars Science Laboratory’s curiosity rover. Science 343(6169): 1244797. [CrossRef] [Google Scholar]
  • Keating A, Mohammadzadeh A, Nieminen P, Maia D, Coutinho S, Evans H, Pimenta M, Huot J-P, Daly E. 2005. A model for Mars radiation environment characterization. IEEE Trans Nucl Sci 52(6): 2287–2293. [Google Scholar]
  • Kohler J, Zeitlin C, Ehresmann B, Wimmer-Schweingruber R, Hassler D, et al. 2014. Measurements of the neutron spectrum on the Martian surface with MSL/RAD. J Geophys Res Planet 119(3): 594–603. [Google Scholar]
  • Leray S, David J, Khandaker M, Mank G, Mengoni A, Otsuka N, Filges D, Gallmeier F, Konobeyev A, Michel R. 2011. Results from the IAEA benchmark of spallation models. J Korean Phys Soc 59(2): 791–796. [CrossRef] [Google Scholar]
  • Lewis SR, Collins M, Read PL, Forget F, Hourdin F, Fournier R, Hourdin C, Talagrand O, Huot J-P. 1999. A climate database for Mars. J Geophys Res Planet (1991–2012) 104(E10): 24177–24194. [Google Scholar]
  • Mancusi D, Boudard A, Cugnon J, David J-C, Kaitaniemi P, Leray S. 2014. Extension of the Liege intranuclear-cascade model to reactions induced by light nuclei. Phys Rev C 90(5): 054602. [Google Scholar]
  • Matthiä D, Ehresmann B, Lohf H, Kohler J, Zeitlin C, et al. 2016. The Martian surface radiation environment – A comparison of models and MSL/RAD measurements. J Space Weather Space Clim 6(13): 1–17. DOI: 10.1051/swsc/2016008. [CrossRef] [Google Scholar]
  • McKenna-Lawlor S, Gongalves P, Keating A, Morgado B, Heynderickx D, et al. 2012. Characterization of the particle radiation environment at three potential landing sites on Mars using ESAs MEREM models. Icarus 218(1): 723–734. [CrossRef] [Google Scholar]
  • Nilsson-Almqvist B, Stenlund E. 1987. Interactions between hadrons and nuclei: The Lund Monte Carlo – FRITIOF version 1.6. Comput Phys Commun 43(3): 387–397. [Google Scholar]
  • O’Neill PM. 2010. Badhwar-O’Neill 2010 galactic cosmic ray flux model revised. IEEE Trans Nucl Sci 6(57): 3148–3153. [Google Scholar]
  • Picone J, Hedin A, Drob DP, Aikin A. 2002. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J Geophys Res Space Phys 107(A12): 1468. [Google Scholar]
  • Rafkin SC, Zeitlin C, Ehresmann B, Hassler D, Guo J, et al. 2014. Diurnal variations of energetic particle radiation at the surface of Mars as observed by the Mars Science Laboratory Radiation Assessment Detector. J Geophys Res (Planet) 119: 1345–1358. [Google Scholar]
  • Saganti PB, Cucinotta FA, Wilson JW, Schimmerling W. 2002. Visualization of particle flux in the human body on the surface of Mars. J Rad Res 43(Suppl): S119–S124. [CrossRef] [Google Scholar]
  • Saganti PB, Cucinotta FA, Wilson JW, Simonsen LC, Zeitlin C. 2004. Radiation climate map for analyzing risks to astronauts on the Mars surface from galactic cosmic rays. Space Sci Rev 110(1–2): 143–156. [CrossRef] [Google Scholar]
  • Sato T, Niita K, Matsuda N, Hashimoto S, Iwamoto Y, et al. 2013. Particle and heavy ion transport code system, PHITS, version 2.52. J Nucl Sci Technol 50(9): 913–923. [Google Scholar]
  • Simonsen L, Nealy J, Townsend L, Wilson J. 1990. Radiation exposure for manned mars surface missions, NASA technical paper series. NASA-TP-2979, L-16708. MARCH 1990. PP. 24. Document, Vol. 1. [Google Scholar]
  • Simonsen LC, Nealy JE. 1993. Mars surface radiation exposure for solar maximum conditions and 1989 solar proton events. NASA technical paper series, 3300. [Google Scholar]
  • Simpson J. 1983. Elemental and isotopic composition of the galactic cosmic rays. Ann Rev Nucl Part Sci 33(1): 323–382. [Google Scholar]
  • Slaba TC, Wilson JW, Badavi FF, Reddell BD, Bahadori AA. 2016. Solar proton exposure of an ICRU sphere within a complex structure part II: Ray-trace geometry. Life Sci Space Res 9: 77–83. [CrossRef] [Google Scholar]
  • von Forstner JLF, Guo J, Wimmer-Schweingruber RF, Hassler DM, Temmer M, et al. 2018. Using forbush decreases to derive the transit time of ICMEs propagating from 1 AU to Mars. J Geophys Res Space Phys 123(1): 39–56. [CrossRef] [Google Scholar]
  • Wilson JW, Slaba TC, Badavi FF, Reddell BD, Bahadori AA. 2016. Solar proton exposure of an ICRU sphere within a complex structure: Combinatorial geometry. Life Sci Space Res 9: 69–76. [CrossRef] [Google Scholar]
  • Wimmer-Schweingruber RF, Kohler J, Hassler DM, Guo J, Appel J-K, et al. 2015. On determining the zenith angle dependence of the Martian radiation environment at Gale Crater altitudes. Geophys Res Lett 42(24): 10557–10564 [CrossRef] [Google Scholar]
  • Winslow RM, Schwadron NA, Lugaz N, Guo J, Joyce CJ, et al. 2018. Opening a window on ICME-driven GCR modulation in the inner solar system. Astrophys J 856(2): 139. [CrossRef] [Google Scholar]
  • Witasse O, Sánchez-Cano B, Mays M, Kajdic P, Opgenoorth H, et al. 2017. Interplanetary coronal mass ejection observed at STEREO-A, Mars, comet 67P/Churyumov-Gerasimenko, Saturn, and New Horizons en-route to Pluto. Comparison of its Forbush decreases at 1.4, 3.1 and 9.9 AU. J Geophys Res Space Phys 122: 7865–7890. [Google Scholar]
  • Zeitlin C, Hassler D, Guo J, Ehresmann B, Wimmer-Schweingruber R, et al. 2018. Analysis of the radiation hazard observed by RAD on the surface of mars during the September 2017 solar particle event. Geophys Res Lett 45(12): 5845–5851. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.