Open Access
Research Article
Issue
J. Space Weather Space Clim.
Volume 9, 2019
Article Number A40
Number of page(s) 10
DOI https://doi.org/10.1051/swsc/2019039
Published online 06 November 2019
  • Bailey GJ, Moffett RJ, Murphy JA. 1978. Interhemispheric flow of thermal plasma in a closed magnetic flux tube at mid-latitudes under sunspot minimum conditions. Planet Space Sci 26(8): 753–765. [CrossRef] [Google Scholar]
  • Burrell AG, Heelis RA, Stoneback RA. 2012. Equatorial longitude and local time variations of topside magnetic field-aligned ion drifts at solar minimum. J Geophys Res 117: A04304. DOI: 10.1029/2011JA017264. [CrossRef] [Google Scholar]
  • Burrell AG, Heelis RA, Ridley A. 2013. Daytime altitude variations of the equatorial, topside magnetic field-aligned ion transport at solar minimum. J Geophys Res (Space Phys) 118: 3568–3575. DOI: 10.1002/jgra.50284. [CrossRef] [Google Scholar]
  • Burns AG, Zeng Z, Wang W, Lei J, Solomon SC, Richmond AD, Killeen TL, Kuo Y-H. 2008. Behavior of the F2 peak ionosphere over the South Pacific at dusk during quiet summer conditions from COSMIC data. J Geophys Res 113: A12305. DOI: 10.1029/2008JA013308. [Google Scholar]
  • Chappell CR. 1972. Recent satellite measurements of the morphology and dynamics of the plasmasphere. Rev Geophys 10: 951–979. [CrossRef] [Google Scholar]
  • Chen Y, Liu L, Wan W. 2011. Does the F10.7 index correctly describe solar EUV flux during the deep solar minimum of 2007–2009? J Geophys Res 116: A04304. DOI: 10.1029/2010JA016301. [NASA ADS] [CrossRef] [Google Scholar]
  • Chen Y, Liu L, Le H, Wan W, Zhang H. 2015. NmF2 enhancement during ionospheric F2 region nighttime: A statistical analysis based on COSMIC observations during the 2007–2009 solar minimum. J Geophys Res (Space Phys) 120: 10083–10095. DOI: 10.1002/2015JA021652. [CrossRef] [Google Scholar]
  • Chen Y, Liu L, Le H, Wan W, Zhang H. 2016. The global distribution of the dusk-to-nighttime enhancement of summer NmF2 at solar minimum. J Geophys Res (Space Phys) 121: 7914–7922. DOI: 10.1002/2016JA022670. [CrossRef] [Google Scholar]
  • Chen Y, Liu L, Le H, Wan W, Zhang H. 2017. The effect of zonal wind reversal around sunset on ionospheric interhemispheric asymmetry at March equinox of a solar maximum year 2000. J Geophys Res (Space Phys) 122: 4726–4735. DOI: 10.1002/2017JA023874. [CrossRef] [Google Scholar]
  • England SL, Immel TJ, Sagawa E, Henderson SB, Hagan ME, Mende SB, Frey HU, Swenson CM, Paxton LJ. 2006. Effect of atmospheric tides on the morphology of the quiet time, postsunset equatorial ionospheric anomaly. J Geophys Res 111: A10S19. DOI: 10.1029/2006JA011795. [CrossRef] [Google Scholar]
  • England SL, Immel TJ, Huba JD, Hagan ME, Maute A, DeMajistre R. 2010. Modeling of multiple effects of atmospheric tides on the ionosphere: An examination of possible coupling mechanisms responsible for the longitudinal structure of the equatorial ionosphere. J Geophys Res 115: A05308. DOI: 10.1029/2009JA014894. [CrossRef] [Google Scholar]
  • Evans JV, Holt JM. 1978. Nighttime proton fluxes at Millstone Hill. Planet Space Sci 26: 727–744. [CrossRef] [Google Scholar]
  • Finlay CC, Maus S, Beggan CD, Bondar TN, Chambodut A, Chernova TA, et al. 2010. International geomagnetic reference field: The eleventh generation. Geophys J Int 183: 1216–1230. DOI: 10.1111/j.1365-246X.2010.04804.x. [NASA ADS] [CrossRef] [Google Scholar]
  • Fejer BG, Jensen JW, Su S-Y. 2008. Quiet time equatorial F region vertical plasma drift model derived from ROCSAT-1 observations. J Geophys Res 113: A05304. DOI: 10.1029/2007JA012801. [CrossRef] [Google Scholar]
  • Fisher DJ, Makela JJ, Meriwether JW, Buriti RA, Benkhaldoun Z, Kaab M, Lagheryeb A. 2015. Climatologies of nighttime thermospheric winds and temperatures from Fabry-Perot interferometer measurements: From solar minimum to solar maximum. J Geophys Res (Space Phys) 120: 6679–6693. DOI: 10.1002/2015JA021170. [CrossRef] [Google Scholar]
  • Förster M, Jakowski N. 1986. Interhemispheric ionospheric coupling at the American sector during low solar activity. II. Modelling. Gerlands Beitr Geophys 95: 301–314. [Google Scholar]
  • Förster M, Jakowski N. 1988. The nighttime winter anomaly (NWA) effect in the American sector as a consequence of interhemispheric ionospheric coupling. PAGEOPH 127: 447–471. [CrossRef] [Google Scholar]
  • Greenspan ME, Burke WJ, Rich FJ, Hughes WJ, Heelis RA. 1994. DMSP F8 observations of the mid-latitude and low-latitude topside ionosphere near solar minimum. J Geophys Res 99: 3817–3826. DOI: 10.1029/93JA02287. [CrossRef] [Google Scholar]
  • Hanson WB, Moffett RJ. 1966. Ionization transport effects in the equatorial F region. J Geophys Res 71: 5559–5572. DOI: 10.1029/JZ071i023p05559. [CrossRef] [Google Scholar]
  • Horvath I, Lovell BC. 2009a. An investigation of the northern hemisphere midlatitude nighttime plasma density enhancements and their relations to the midlatitude nighttime trough during summer. J Geophys Res 114: A08308. DOI: 10.1029/2009JA014094. [Google Scholar]
  • Horvath I, Lovell BC. 2009b. Investigating the relationships among the South Atlantic Magnetic Anomaly, southern nighttime midlatitude trough, and nighttime Weddell Sea Anomaly during southern summer. J Geophys Res 114: A02306. DOI: 10.1029/2008JA013719. [Google Scholar]
  • Immel TJ, Sagawa E, England SL, Henderson SB, Hagan ME, Mende SB, Frey HU, Swenson CM, Paxton LJ. 2006. Control of equatorial ionospheric morphology by atmospheric tides. Geophys Res Lett 33: L15108. DOI: 10.1029/2006GL026161. [CrossRef] [Google Scholar]
  • Jakowski N, Förster M. 1995. About the nature of the Night-time Winter Anomaly effect (NWA) in the F-region of the ionosphere. Planet Space Sci 43: 603–612. [CrossRef] [Google Scholar]
  • Jakowski N, Hoque MM, Kriegel M, Patidar V. 2015. The persistence of the NWA effect during the low solar activity period 2007–2009. J Geophys Res (Space Phys) 120: 9148–9160. DOI: 10.1002/2015JA021600. [CrossRef] [Google Scholar]
  • Jee G, Burns AG, Kim Y-H, Wang W. 2009. Seasonal and solar activity variations of the Weddell Sea Anomaly observed in the TOPEX total electron content measurements. J Geophys Res 114: A04307. DOI: 10.1029/2008JA013801. [Google Scholar]
  • Kersley L, Hajeb-Hosseinieh H, Edwards KJ. 1978. Plasma fluxes between ionosphere and protonosphere. Nature 271: 427–429. [CrossRef] [Google Scholar]
  • Kil H, DeMajistre R, Paxton LJ, Zhang Y. 2006. Nighttime F-region morphology in the low and middle latitudes seen from DMSP F15 and TIMED/GUVI. J Atmos Solar-Terr Phys 68: 1672–1681. [CrossRef] [Google Scholar]
  • Laundal KM, Richmond AD. 2017. Magnetic coordinate systems. Space Sci Rev 206: 27–59. DOI: 10.1007/s11214-016-0275-y. [CrossRef] [Google Scholar]
  • Lin CH, Liu CH, Liu JY, Chen CH, Burns AG, Wang W. 2010. Midlatitude summer nighttime anomaly of the ionospheric electron density observed by FORMOSAT-3/COSMIC. J Geophys Res 115: A03308. DOI: 10.1029/2009JA014084. [Google Scholar]
  • Liu H, Yamamoto M, Lühr H. 2009. Wave-4 pattern of the equatorial mass density anomaly: A thermospheric signature of tropical deep convection. Geophys Res Lett 36: L18104. DOI: 10.1029/2009GL039865. [CrossRef] [Google Scholar]
  • Oyama S-i, Kubota K, Morinaga T, Tsuda TT, Kurihara J, Larsen MF, Yamamoto M, Cai L. 2017. Simultaneous FPI and TMA measurements of the lower thermospheric wind in the vicinity of the poleward expanding aurora after substorm onset. J Geophys Res (Space Phys) 122: 10864–10875. [CrossRef] [Google Scholar]
  • Park CG. 1970. Whistler observations of the interchange of ionization between the ionosphere and the protonosphere. J Geophys Res 75: 4249–4260. [CrossRef] [Google Scholar]
  • Ren Z, Wan W, Liu L, Xiong J. 2009. Intra-annual variation of wave number 4 structure of vertical E × B drifts in the equatorial ionosphere seen from ROCSAT-1. J Geophys Res 114: A05308. DOI: 10.1029/2009JA014060. [Google Scholar]
  • Rich F. 1994. Technical description for the topside ionospheric plasma monitor (SSIES, SSIES-2 and SSIES-3) on spacecraft of the Defense Meteorological Satellite Program (DMSP), Technical Report PL-TR-94-2187. Air Force Phillips laboratory, Bedford, MA. [Google Scholar]
  • Solomon SC, Qian L, Didkovsky LV, Viereck RA, Woods TN. 2011. Causes of low thermospheric density during the 2007–2009 solar minimum. J Geophys Res 116: A00H07. DOI: 10.1029/2011JA016508. [CrossRef] [Google Scholar]
  • Tulasi Ram S, Su S-Y, Liu C-H. 2009. FORMOSAT-3/COSMIC observations of seasonal and longitudinal variations of equatorial ionization anomaly and its interhemispheric asymmetry during the solar minimum period. J Geophys Res 114: A06311. DOI: 10.1029/2008JA013880. [Google Scholar]
  • VanZandt TE, Clark WL, Warnock JM. 1972. Magnetic apex coordinates: A magnetic coordinate system for the ionospheric F2 layer. J Geophys Res 77: 2406–2411. [CrossRef] [Google Scholar]
  • Wan W, Liu L, Pi X, Zhang M-L, Ning B, Xiong J, Ding F. 2008. Wavenumber-4 patterns of the total electron content over the low latitude ionosphere. Geophys Res Lett 35: L12104. DOI: 10.1029/2008GL033755. [Google Scholar]
  • Wan W, Ren Z, Ding F, Xiong J, Liu L, Ning B, Zhao B, Li G, Zhang M-L. 2012. A simulation study for the couplings between DE3 tide and longitudinal WN4 structure in the thermosphere and ionosphere. J Atmos Solar-Terr Phys 90: 52–60. DOI: 10.1016/j.jastp.2012.04.011. [CrossRef] [Google Scholar]
  • Zhang S-R, Foster JC, Holt JM, Erickson PJ, Coster AJ. 2012. Magnetic declination and zonal wind effects on longitudinal differences of ionospheric electron density at midlatitudes. J Geophys Res 117: A08329. DOI: 10.1029/2012JA017954. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.