Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
|
|
---|---|---|
Article Number | 52 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/swsc/2020054 | |
Published online | 02 November 2020 |
- Alfonsi L, De Franceschi G, Perrone L. 2001. Long term trend in the high latitude ionosphere. Phys Chem Earth 26(5): 303–307. https://doi.org/10.1016/S1464-1917(01)00003-4. [CrossRef] [Google Scholar]
- Balan N, Shiokawa K, Otsuka L, Kukuchi T, Lekshmi DV, et al. 2010. A physical mechanism of positive ionospheric storms at low latitudes and midlatitudes. J Geophys Res 115: A02304. https://doi.org/10.1029/2009JA014515. [Google Scholar]
- Basu S, Guhathakurta BK, Basu D. 1975. Ionospheric response to geomagnetic storms at low midlatitudes. Ann Geophys 31: 497–505. [Google Scholar]
- Bauske R, Prölss GW. 1997. Modeling the ionospheric response to traveling atmospheric disturbances. J Geophys Res 102: 14555–14562. https://doi.org/10.1029/97JA00941. [CrossRef] [Google Scholar]
- Bauske R, Prölss GW. 1998. Numerical simulation of long-duration positive ionospheric storm effects. Adv Space Res 22(1): 117–121. https://doi.org/10.1016/S0273-1177(97)01110-1. [CrossRef] [Google Scholar]
- Buonsanto MJ, Witasse OG. 1999. An updated climatology of thermospheric neutral winds and F region ion drifts above Millstone Hill. J Geophys Res 1(4): 24675–24687. https://doi.org/10.1029/1999JA900345. [CrossRef] [Google Scholar]
- Buonsanto MJ. 1999. Ionospheric storms – A review. Space Sci Rev 88: 563–601. https://doi.org/10.1023/A:1005107532631. [CrossRef] [Google Scholar]
- Buresova D, Lastovicka J, Hejda P, Bochnicek J. 2014. Ionospheric disturbances under low solar activity conditions. Adv Space Res 54(2): 185–196. https://doi.org/10.1016/j.asr.2014.04.007. [CrossRef] [Google Scholar]
- Bremer J, Laštovčka J, Mikhailov AV, Altadill D, Bencze P, et al. 2009. Climate of the upper atmosphere. Ann Geophys Italy 52: 273–299. https://doi.org/10.4401/ag-4576. [Google Scholar]
- Cander LR, Mihajlovic SJ. 1998. Forecasting ionospheric structure during the great geomagnetic storms. J Geophys Res 103: 391–398. https://doi.org/10.1029/97JA02418. [CrossRef] [Google Scholar]
- Cesaroni C, Scotto C, Ippolito A. 2013. An automatic quality factor for Autoscala foF2 values. Adv Space Res 51(12): 2316–2321. https://doi.org/10.1016/j.asr.2013.02.009. [CrossRef] [Google Scholar]
- Danilov AD, Lastovicka J. 2001. Effects of geomagnetic storms on the ionosphere and atmosphere. Int J Geom Aeron 3(2): 201–224. [Google Scholar]
- Danilov AD. 2013. Ionospheric F-region response to geomagnetic disturbances. Adv Space Res 52: 343–366. https://doi.org/10.1016/j.asr.2013.04.019. [CrossRef] [Google Scholar]
- David M, Sojka JJ. 2010. Single-day dayside density enhancements over Europe: A survey of a half-century of ionospheric data. J Geophys Res 115: A12311. https://doi.org/1029/2010JA015711. [CrossRef] [Google Scholar]
- Essex EA. 1979. The effects of geomagnetic activity on the F2-region of the ionosphere. J Atmos Sol-Terr Phys 41: 951–960. https://doi.org/10.1016/0021-9169(79)90096-5. [CrossRef] [Google Scholar]
- Evans JV. 1973. The causes of storm-time increases of the F-layer at mid-latitudes. J Atmos Sol-Terr Phys 35: 593–616. https://doi.org/10.1016/0021-9169(73)90191-8. [CrossRef] [Google Scholar]
- Fang H, Weng L, Sheng Z. 2012. Variations in the thermosphere and ionosphere response to the 17–20 April 2002 geomagneticstorms. Adv Space Res 49: 1529–1536. https://doi.org/10.1016/j.asr.2012.02.024. [CrossRef] [Google Scholar]
- Fuller-Rowell TJ, Codrescu MV, Moffett RJ, Quegan S. 1994. Response of the thermosphere and ionosphere to geomagnetic storm. J Geophys Res 99: 3893–3914. https://doi.org/10.1029/93JA02015. [CrossRef] [Google Scholar]
- Grozov VP, Bubnova TV, Ilyin NV. 2018. Short-term forecast of ionospheric parameters by oblique sounding data. In: Proc. SPIE 10833, 24th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. 108339F. https://doi.org/10.1117/12.2503943. [Google Scholar]
- Huang C-S, Foster JC, Kelley MC. 2005. Long-duration penetration of the interplanetary electric field to the low-latitude ionosphere during the main phase of magnetic storms. J Geophys Res 110: A11309. https://doi.org/10.1029/2005JA011202. [CrossRef] [Google Scholar]
- Ippolito A. 2019. foF2 variations measured by the Rome observatory during solar minimum in the last three solar cycles. Ann Geophys 62(4): GM452. . https://doi.org/10.4401/ag-7762. [Google Scholar]
- Ippolito A, Scotto C, Francis M, Settimi A, Cesaroni C. 2015. Automatic interpretation of oblique ionograms. Adv Space Res 55: 1624–1629. https://doi.org/10.1016/j.asr.2014.12.025. [CrossRef] [Google Scholar]
- Ippolito A, Scotto C, Sabbagh D, Sgrigna V, Maher P. 2016. A procedure for the reliability improvement of the oblique ionograms automatic scaling algorithm. Radio Sci 51: 454–460. https://doi.org/10.1002/2015RS005919. [CrossRef] [Google Scholar]
- Ippolito A, Altadill D, Scotto C, Blanch E. 2018. Oblique Ionograms Automatic Scaling Algorithm OIASA application to the ionograms recorded by Ebro observatory ionosonde. J Space Weather Space Clim 8: A10. https://doi.org/10.1051/swsc/2017042. [CrossRef] [Google Scholar]
- Karpachev AT, Beloff N, Carozzi TD, Denisenko PF, Karhunem TJT, et al. 2010. Detection of large scale TIDs associated with the dayside cusp using SuperDARN Data. J Atmos Sol-Terr Phys 72(9–10): 653–661. https://doi.org/10.1016/j.jastp.2010.02.018. [CrossRef] [Google Scholar]
- Kil H, Paxton LJ, Pi X, Hairston MR, Zhang Y. 2003. Case study of the 15 July 2000 magnetic storm effects on the ionosphere-driver of the positive ionospheric storm in the winter hemisphere. J Geophys Res 108: 1391. https://doi.org/10.1029/2002JA009782. [CrossRef] [Google Scholar]
- Kutiev I, Muhtarov P. 2001. Modeling of midlatitude F-region response to geomagnetic activity. J Geophys Res 106: 15501–15510. https://doi.org/10.1029/2001JA900018. [CrossRef] [Google Scholar]
- Lu G, Goncharenko LP, Richmond AD, Roble RG, Aponte N. 2008. A dayside ionospheric positive storm phase driven by neutral winds. J Geophys Res 113: A08304. https://doi.org/10.1029/2007JA0128935. [Google Scholar]
- Matuura N. 1972. Theoretical models of ionospheric storms. Space Sci Rev 13: 129–189. https://doi.org/10.1007/BF00198166. [CrossRef] [Google Scholar]
- Mendillo M, Klobuchar JA. 1975. Investigations of the ionospheric F region using multistation total electron content observations. J Geophys Res 80: 643–650. https://doi.org/10.1029/JA080i004p00643. [CrossRef] [Google Scholar]
- Mendillo M, Narvaez C. 2009. Ionospheric storms at geophysically-equivalent sites – Part 1: Storm-time patterns for sub-auroral ionospheres. Ann Geophys 27: 1679–1694. https://doi.org/10.5194/angeo-27-1679-2009. [CrossRef] [Google Scholar]
- Mikhailov AV, Skoblin MG, Förster M. 1995. Daytime F2-layer positive storm effect at middle and lower latitudes. Ann Geophys 13: 532–540. https://doi.org/10.1007/s00585-995-0532-y. [CrossRef] [Google Scholar]
- Mikhailov A, Forster M. 1999. Some F2-layer effects during the January 06–11, 1997 cedar storm period as observed with the Millstone Hill incoherent scatter facility. J Atmos Sol-Terr Phys 61: 249–261. https://doi.org/10.1016/S1364-6826(98)00129-1. [CrossRef] [Google Scholar]
- Mikhailov AV, Depueva AK, Leschinskaya TY. 2004. Morphology of quiet time F2-layer disturbances: high and lower latitudes. Int J Geomag Aeronom 5: 1–14. https://doi.org/10.1029/2003GI000058. [Google Scholar]
- Mikhailov AV, Depuev VH, Depueva AH. 2007. Synchronous NmF2 and NmE daytime variations as a key to the mechanism of quiet-time F2-layer disturbances. Ann Geophys 25: 483–493. https://doi.org/10.5194/angeo-25-483-2007. [CrossRef] [Google Scholar]
- Mikhailov AV, Perrone L. 2009. Pre-storm NmF2 enhancements at middle latitudes: delusion or reality? Ann Geophys 27: 1321–1330. https://doi.org/10.5194/angeo-27-1321-2009. [CrossRef] [Google Scholar]
- Mikhailov AV, Perrone L, Smirnova N. 2012. Two types of positive disturbances in the daytime mid-latitude F2-layer: morphology and formation mechanisms. J Atmos Sol-Terr Phys 81: 59–75. https://doi.org/10.1016/j.jastp.2012.04.00. [CrossRef] [Google Scholar]
- Mikhailov AV, Perrone L. 2014. Comment on “The winter anomaly in the middle‐latitude F region during the solar minimum period observed by the Constellation Observing System for Meteorology, Ionosphere, and Climate” by W. K. Lee, H. Kil, Y.‐S. Kwak, Q. Wu, S. Cho, and J. U. Park . J Geophys Res Space Phys 119: 7972–7978. https://doi.org/10.1029/2010JA015815. [CrossRef] [Google Scholar]
- Mikhailov AV, Perrone L. 2015. The annual asymmetry in the F2-layer during deep solar minimum (2008–2009): December anomaly. J Geophys Res 120: 1341–1354. https://doi.org/10.1002/2014JA020929. [CrossRef] [Google Scholar]
- Mikhailov AV, Perrone L. 2018. Interminimum foF1 differences and their physical interpretation. J Geophys Res 2018: 768–780. https://doi.org/10.1002/2017JA024831. [CrossRef] [Google Scholar]
- Obayashi T. 1964. Morphology of storms in the ionosphere. In: Research in Geophysics, vol. 1, Odishaw H (Ed.), MIT Press, Cambridge, MA , pp. 335–366. [Google Scholar]
- Paznukhov VV, Altadill D, Reinisch BW. 2009. Experimental evidence for the role of the neutral wind in the development of ionospheric storms in midlatitudes. J Geophys Res 114: A12319. https://doi.org/10.1029/2009JA014479. [Google Scholar]
- Perrone L, De Franceschi G. 1998. Solar, ionospheric and geomagnetic indices. Ann Geofis 41: 843–855. https://doi.org/10.4401/ag-3824. [Google Scholar]
- Prölss GW, Jung MJ. 1978. Traveling atmospheric disturbances as a possible explanation for daytime positive storm effects of moderate duration at middle latitudes. J Atmos Sol-Terr Phys 40: 1351–1354. https://doi.org/10.1016/0021-9169(78)90088-0. [CrossRef] [Google Scholar]
- Prölss GW. 1991. Thermosphere-ionosphere coupling during disturbed conditions. J Geomag Geoelectr 43(Suppl): 537–549. https://doi.org/10.5636/jgg.43.Supplement1_537. [CrossRef] [Google Scholar]
- Prölss GW. 1993. Common origin of positive ionospheric storms at middle latitudes and the geomagnetic activity effect at low latitudes. J Geophys Res 98: 5981–5991. [CrossRef] [Google Scholar]
- Prölss GW. 1995. Ionospheric F-region storms. In: Handbook of atmospheric electrodynamics , vol. 2, Volland H (Ed.), CRC Press, Boca Raton, pp. 195–248. [Google Scholar]
- Prölss GW. 2004. Physics of the Earth’s space environment. Springer-Verlag, Berlin Heidelberg. 513p. [Google Scholar]
- Rishbeth H. 1991. F-region storms and thermospheric dynamics. J Geomag Geoelectr 43: 513–524. https://doi.org/10.5636/jgg.43.Supplement1_513. [CrossRef] [Google Scholar]
- Rishbeth H, Heelis RA, Makela JJ, Basu S. 2010. Storming the Bastille: the effect of electric fields on the ionospheric F-layer. Ann Geophys 28: 977–981. https://doi.org/10.5194/angeo-28-977-2010. [CrossRef] [Google Scholar]
- Rodger AS, Wrenn GL, Rishbeth H. 1989. Geomagnetic storms in the Antarctic F-region. II. Physical interpretation.. J Atmos Sol-Terr Phys 51: 851–866. https://doi.org/10.1016/0021-9169(89)90002-0. [CrossRef] [Google Scholar]
- Scotto C, Pezzopane M. 2002. A software for automatic scaling of foF2 and MUF (3000) F2 from ionograms. URSI XXVIIth General Assembly. https://www.ursi.org/proceedings/procGA02/papers/p1018.pdf. [Google Scholar]
- Stanisławska I, Zbyszynski Z. 2001. Forecasting of the ionospheric quiet and disturbed f0F2 values at single location. Radio Sci 36: 1065–1071. https://doi.org/10.1029/1999RS002242. [CrossRef] [Google Scholar]
- Tsagouri I, Belehaki A, Moraitis G, Mavromichalaki H. 2000. Positive and negative ionospheric disturbances at middle latitudes during geomagnetic storms. Geophys Res Lett 21: 3579–3582. https://doi.org/10.1029/2000GL003743. [CrossRef] [Google Scholar]
- Tsagouri I, Belehaki A. 2008. An upgrade of the solar-wind-driven empirical model for the middle latitude ionospheric storm-time response. J Atmos Sol-Terr Phys 70: 2061–2076. https://doi.org/10.1016/j.jastp.2008.09.010. [CrossRef] [Google Scholar]
- Tsurutani BT, Gonzalez WD. 1995. The future of geomagnetic storm predictions: implications from recent solar and interplanetary observations. J Atmos Sol-Terr Phys 57(12): 1369–1384. https://doi.org/10.1016/0021-9169(95)00138-R. [CrossRef] [Google Scholar]
- Wrenn GL, Rodger AS, Rishbeth H. 1987. Geomagnetic storms in the Antarctic F-region. I. Diurnal and seasonal patterns for main phase effects. J Atmos Sol-Terr Phys 49: 901–913. https://doi.org/10.1016/0021-9169(87)90004-3. [CrossRef] [Google Scholar]
- Yao Y, Liu L, Kong J, Zhai C. 2016. Analysis of the global ionospheric disturbances of the March 2015 great storm. J Geophys Res Space Phys 121: 12157–12170. https://doi.org/10.1002/2016JA023352. [CrossRef] [Google Scholar]
- Zevakina RA. 1971. Ionospheric disturbances. In: Ionospheric disturbances and their impact on radio communication, Nauka, Moscow, pp. 3–26 (in Russian). [Google Scholar]
- Zevakina RA, Kiseleva MV. 1978. F2-region parameter variations during positive disturbances related to phenomena in the magnetosphere and interplanetary medium. In: The diagnostics and modelling of the ionospheric disturbances, Nauka, Moscow, , pp. 151–167 (in Russian). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.