Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
|
|
---|---|---|
Article Number | 51 | |
Number of page(s) | 17 | |
DOI | https://doi.org/10.1051/swsc/2020053 | |
Published online | 14 October 2020 |
- Andersson ME, Verronen PT, Rodger CJ, Clilverd MA, Seppälä A. 2014. Missing driver in the Sun-Earth connection from energetic electron precipitation impacts mesospheric ozone. Nat Commun 5: 5197. https://doi.org/10.1038/ncomms6197. [CrossRef] [Google Scholar]
- Bai X-N, Caprioli D, Sironi L, Spitkovsky A. 2015. Magnetohydrodynamic-particle-in-cell Method for Coupling Cosmic Rays with a Thermal Plasma: Application to Non-relativistic Shocks. Astrophys J 809(1): 55. https://doi.org/10.1088/0004-637X/809/1/55. [NASA ADS] [CrossRef] [Google Scholar]
- Berchem J, Richard R, Escoubet P, Wing S, Pitout F. 2014. Dawn-dusk asymmetry in solar wind ion entry and dayside precipitation: Results from large-scale simulations. J Geophys Res Space Phys 119(3): 1549–1562. https://doi.org/10.1002/2013JA019427. [CrossRef] [Google Scholar]
- Berchem J, Richard RL, Escoubet CP, Wing S, Pitout F. 2016. Asymmetrical response of dayside ion precipitation to a large rotation of the IMF. J Geophys Res Space Phys 121(1): 263–273. https://doi.org/10.1002/2015JA021969. [CrossRef] [Google Scholar]
- Burch JL, Reiff PH, Heelis RA, Winningham JD, Hanson WB, Gurgiolo C, Menietti JD, Hoffman RA, Barfield JN. 1982. Plasma injection and transport in the mid-altitude polar cusp. Geophys. Res. Lett. 9(9): 921–924. https://doi.org/10.1029/GL009i009p00921. [CrossRef] [Google Scholar]
- Caprioli D, Spitkovsky A. 2014. Simulations of ion acceleration at non-relativistic shocks. I. Acceleration efficiency. Astrophys J 783(2): 91. https://doi.org/10.1088/0004-637X/783/2/91. [Google Scholar]
- Carlson CW, McFadden JP, Turin P, Curtis DW, Magoncelli A. 2001. The electron and ion plasma experiment for fast. Space Sci Rev 98: 33–66. https://doi.org/10.1023/A:1013139910140. [CrossRef] [Google Scholar]
- Cassak PA, Shay MA. 2007. Scaling of asymmetric magnetic reconnection: General theory and collisional simulations. Phys. Plasmas 14(10): 102114. https://doi.org/10.1063/1.2795630. [NASA ADS] [CrossRef] [Google Scholar]
- Chang SW, Gallagher DL, Spann JF, Mende SB, Greenwald RA, Newell PT. 2004. Cusp and LLBL as sources of the isolated dayside auroral feature during northward IMF. J Geophys Res Space Phys 109(A12): 222. 10.1029/2004JA010619. [Google Scholar]
- Connor HK, Raeder J, Sibeck DG, Trattner KJ. 2015. Relation between cusp ion structures and dayside reconnection for four IMF clock angles: OpenGGCM-LTPT results. J Geophys Res Space Phys 120(6): 4890–4906. https://doi.org/10.1002/2015JA021156. [CrossRef] [Google Scholar]
- Coumans V, Gérard J-C, Hubert B, Mende SB, Cowley SWH. 2004. Morphology and seasonal variations of global auroral proton precipitation observed by IMAGE-FUV. J Geophys Res Space Phys 109(A12): 205. https://doi.org/10.1029/2003JA010348. [CrossRef] [Google Scholar]
- Cousins EDP, Shepherd SG. 2012. Statistical maps of small-scale electric field variability in the high-latitude ionosphere. J Geophys Res Space Phys 117(A12): 304. https://doi.org/10.1029/2012JA017929. [Google Scholar]
- Daldorff LKS, Tóth G, Gombosi TI, Lapenta G, Amaya J, Markidis S, Brackbill JU. 2014. Two-way coupling of a global Hall magnetohydrodynamics model with a local implicit particle-in-cell model. J Comput Phys 268: 236–254. https://doi.org/10.1016/j.jcp.2014.03.009. [NASA ADS] [CrossRef] [Google Scholar]
- de Villiers JS, Kosch M, Yamazaki Y, Lotz S. 2017. Influences of various magnetospheric and ionospheric current systems on geomagnetically induced currents around the world. Space Weather 15(2): 403–417. https://doi.org/10.1002/2016SW001566. [CrossRef] [Google Scholar]
- Eastwood JP, Balogh A, Lucek EA, Mazelle C, Dandouras I. 2005. Quasi-monochromatic ULF foreshock waves as observed by the four-spacecraft Cluster mission: 1. Statistical properties. J Geophys Res Space Phys 110(A11): 219. https://doi.org/10.1029/2004JA010617. [Google Scholar]
- Escoubet CP, Fehringer M, Goldstein M. 2001. Introduction the cluster mission. Ann Geophys 19: 1197–1200. https://doi.org/10.5194/angeo-19-1197-2001. [Google Scholar]
- Frey HU. 2007. Localized aurora beyond the auroral oval. Rev Geophys 45(1): RG1003. https://doi.org/10.1029/2005RG000174. [Google Scholar]
- Frey HU, Han D, Kataoka R, Lessard MR, Milan SE, Nishimura Y, Strangeway RJ, Zou Y. 2019. Dayside aurora. Space Sci Rev 215(8): 51. https://doi.org/10.1007/s11214-019-0617-7. [CrossRef] [Google Scholar]
- Frey HU, Mende SB, Fuselier SA, Immel TJ, ØStgaard N.. 2003. Proton aurora in the cusp during southward IMF. J Geophys Res Space Phys 108(A7): 1277. https://doi.org/10.1029/2003JA009861. [CrossRef] [Google Scholar]
- Frey HU, Mende SB, Immel TJ, Fuselier SA, Claflin ES, Gérard JC, Hubert B. 2002. Proton aurora in the cusp. J Geophys Res Space Phys 107: 1091. https://doi.org/10.1029/2001JA900161. [CrossRef] [Google Scholar]
- Fuselier SA, Petrinec SM, Trattner KJ, Fujimoto M, Hasegawa H. 2007. Simultaneous observations of fluctuating cusp aurora and low-latitude magnetopause reconnection. J Geophys Res Space Phys 112(A11): 207. https://doi.org/10.1029/2007JA012252. [CrossRef] [Google Scholar]
- Fuselier SA, Petrinec SM, Trattner KJ, Lavraud B. 2014. Magnetic field topology for northward IMF reconnection: Ion observations. J Geophys Res Space Phys 119(11): 9051–9071. https://doi.org/10.1002/2014JA020351. [CrossRef] [Google Scholar]
- Gargaté L, Bingham R, Fonseca RA, Silva LO. 2007. dHybrid: A massively parallel code for hybrid simulations of space plasmas. Comput Phys Commun 176(6): 419–425. https://doi.org/10.1016/j.cpc.2006.11.013. [CrossRef] [Google Scholar]
- Gary SP. 1985. Electromagnetic ion beam instabilities – Hot beams at interplanetary shocks. Astrophys J 288: 342–352. https://doi.org/10.1086/162797. [NASA ADS] [CrossRef] [Google Scholar]
- Gary SP. 1991. Electromagnetic ion/ion instabilities and their consequences in space plasmas: A review. Space Sci Rev 56(3): 373–415. https://doi.org/10.1007/BF00196632. [Google Scholar]
- Gary SP, Madland CD, Tsurutani BT. 1985. Electromagnetic ion beam instabilities: II. Phys Fluids 28(12): 3691–3695. https://doi.org/10.1063/1.865101. [CrossRef] [Google Scholar]
- Gary SP, Schriver D. 1987. The electromagnetic ion cyclotron beam anisotropy instability. Planet Space Sci 35(1): 51–59. https://doi.org/10.1016/0032-0633(87)90144-9. [CrossRef] [Google Scholar]
- Giacalone J. 2004. Large-scale hybrid simulations of particle acceleration at a parallel shock. Astrophys J 609(1): 452–458. https://doi.org/10.1086/421043. [NASA ADS] [CrossRef] [Google Scholar]
- Grandin M, Battarbee M, Osmane A, Ganse U, Pfau-Kempf Y, Turc L, Brito T, Koskela T, Dubart M, Palmroth M. 2019. Hybrid-Vlasov modelling of nightside auroral proton precipitation during southward interplanetary magnetic field conditions. Ann Geophys 37: 791–806. https://doi.org/10.5194/angeo-37-791-2019. [CrossRef] [Google Scholar]
- Hao Y, Lembege B, Lu Q, Guo F. 2016. Formation of downstream high-speed jets by a rippled nonstationary quasi-parallel shock: 2-D hybrid simulations. J Geophys Res Space Phys 121(3): 2080–2094. https://doi.org/10.1002/2015JA021419. [CrossRef] [Google Scholar]
- Hardy DA, Gussenhoven MS, Brautigam D. 1989. A statistical model of auroral ion precipitation. J Geophys Res 94: 370–392. https://doi.org/10.1029/JA094iA01p00370. [CrossRef] [Google Scholar]
- Hardy DA, Gussenhoven MS, Holeman E. 1985. A statistical model of auroral electron precipitation. J Geophys Res 90(A5): 4229–4248. https://doi.org/10.1029/JA090iA05p04229. [CrossRef] [Google Scholar]
- Heelis RA, Maute A. 2020. Challenges to Understanding the Earth’s Ionosphere and Thermosphere. J Geophys Res Space Phys 125(7): 497. https://doi.org/10.1029/2019JA027497. [CrossRef] [Google Scholar]
- Hoilijoki S, Ganse U, Pfau-Kempf Y, Cassak PA, Walsh BM, Hietala H, von Alfthan S, Palmroth M. 2017. Reconnection rates and X line motion at the magnetopause: Global 2D–3V hybrid-Vlasov simulation results. J Geophys Res Space Phys 122: 2877–2888. https://doi.org/10.1002/2016JA023709. [CrossRef] [Google Scholar]
- Hoilijoki S, Ganse U, Sibeck DG, Cassak PA, Turc L, et al. 2019. Properties of Magnetic Reconnection and FTEs on the Dayside Magnetopause With and Without Positive IMF Bx Component During Southward IMF. J Geophys Res Space Phys 124(6): 4037–4048. https://doi.org/10.1029/2019JA026821. [CrossRef] [Google Scholar]
- Imber SM, Milan SE, Hubert B. 2006. The auroral and ionospheric flow signatures of dual lobe reconnection. Ann Geophys 24(11): 3115–3129. https://doi.org/10.5194/angeo-24-3115-2006. [CrossRef] [Google Scholar]
- Jacobsen B, Lybekk B, Paulsen T, Egeland A, Sandholt PE. 1990. Dayside auroral characteristics as observed from Svalbard. J Geomagn Geoelectr 42(6): 727–736. https://doi.org/10.5636/jgg.42.727. [CrossRef] [Google Scholar]
- Jarvinen R, Vainio R, Palmroth M, Juusola L, Hoilijoki S, Pfau-Kempf Y, Ganse U, Turc L, von Alfthan S. 2018. Ion acceleration by flux transfer events in the terrestrial magnetosheath. Geophys Res Lett 45(4): 1723–1731. https://doi.org/10.1002/2017GL076192. [CrossRef] [Google Scholar]
- Jin Y, Moen JI, Oksavik K, Spicher A, Clausen LBN, Miloch WJ. 2017. GPS scintillations associated with cusp dynamics and polar cap patches. J Space Weather Space Clim 7: A23. https://doi.org/10.1051/swsc/2017022. [CrossRef] [Google Scholar]
- Juusola L, Hoilijoki S, Pfau-Kempf Y, Ganse U, Jarvinen R, Battarbee M, Kilpua E, Turc L, Palmroth M. 2018a. Fast plasma sheet flows and X line motion in the Earth’s magnetotail: Results from a global hybrid-Vlasov simulation. Ann Geophys 36: 1183–1199. https://doi.org/10.5194/angeo-36-1183-2018. [CrossRef] [Google Scholar]
- Juusola L, Pfau-Kempf Y, Ganse U, Battarbee M, Brito T, Grandin M, Turc L, Palmroth M. 2018b. A possible source mechanism for magnetotail current sheet flapping. Ann Geophys 36: 1027–1035. https://doi.org/10.5194/angeo-36-1027-2018. [CrossRef] [Google Scholar]
- Liang J, Donovan E, Spanswick E, Angelopoulos V. 2013. Multiprobe estimation of field line curvature radius in the equatorial magnetosphere and the use of proton precipitations in magnetosphere-ionosphere mapping. J Geophys Res Space Phys 118: 4924–4945. https://doi.org/10.1002/jgra.50454. [CrossRef] [Google Scholar]
- Lockwood M, Denig WF, Farmer AD, Davda VN, Cowley SWH, Luehr H. 1993. Ionospheric signatures of pulsed reconnection at the Earth’s magnetopause. Nature 361(6411): 424–428. https://doi.org/10.1038/361424a0. [CrossRef] [Google Scholar]
- Lorentzen DA, Kintner PM, Moen J, Sigernes F, Oksavik K, Ogawa Y, Holmes J. 2007. Pulsating dayside aurora in relation to ion upflow events during a northward interplanetary magnetic field (IMF) dominated by a strongly negative IMF BY. J Geophys Res Space Phys 112(A3): A03301. https://doi.org/10.1029/2006JA011757. [CrossRef] [Google Scholar]
- McWilliams KA, Yeoman TK, Sigwarth JB, Frank LA, Brittnacher M. 2001. The dayside ultraviolet aurora and convection responses to a southward turning of the interplanetary magnetic field. Ann Geophys 19(7): 707–721. https://doi.org/10.5194/angeo-19-707-2001. [CrossRef] [Google Scholar]
- Mende SB, Heetderks H, Frey HU, Lampton M, Geller SP, et al. 2000. Far ultraviolet imaging from the IMAGE spacecraft. 1. System design. Space Sci Rev 91: 243–270. https://doi.org/10.1023/A:1005271728567. [CrossRef] [Google Scholar]
- Mende SB, Rairden RL, Lanzerotti LJ, Maclennan CG. 1990. Magnetic impulses and associated optical signatures in the dayside aurora. Geophys Res Lett 17(2): 131–134. https://doi.org/10.1029/GL017i002p00131. [CrossRef] [Google Scholar]
- Meng CI. 1982. Latitudinal variation of the polar cusp during a geomagnetic storm. Geophys Res Lett 9(1): 60–63. https://doi.org/10.1029/GL009i001p00060. [CrossRef] [Google Scholar]
- Milan SE, Lester M, Cowley SWH, Brittnacher M. 2000. Convection and auroral response to a southward turning of the IMF: Polar UVI, CUTLASS, and IMAGE signatures of transient magnetic flux transfer at the magnetopause. J Geophys Res 105(A7): 15741–15756. https://doi.org/10.1029/2000JA900022. [CrossRef] [Google Scholar]
- Newell PT, Meng C-I. 1988. Hemispherical asymmetry in cusp precipitation near solstices. J Geophys Res 93(A4): 2643–2648. https://doi.org/10.1029/JA093iA04p02643. [CrossRef] [Google Scholar]
- Newell PT, Meng C-I. 1992. Mapping the dayside ionosphere to the magnetosphere according to particle precipitation characteristics. Geophys Res Lett 19(6): 609–612. https://doi.org/10.1029/92GL00404. [CrossRef] [Google Scholar]
- Newell PT, Meng C-I, Sibeck DG, Lepping R. 1989. Some low-altitude cusp dependencies on the interplanetary magnetic field. J Geophys Res 94(A7): 8921–8927. https://doi.org/10.1029/JA094iA07p08921. [CrossRef] [Google Scholar]
- Němeček Z, Šafránková J. 2008. IMF control of the high-altitude cusp dynamics. Adv Space Res 41(1): 92–102. https://doi.org/10.1016/j.asr.2007.07.038. [CrossRef] [Google Scholar]
- Ofman L, Gedalin M. 2013. Two-dimensional hybrid simulations of quasi-perpendicular collisionless shock dynamics: Gyrating downstream ion distributions. J Geophys Res Space Phys 118(5): 1828–1836. https://doi.org/10.1029/2012JA018188. [CrossRef] [Google Scholar]
- Øieroset M, Lühr H, Moen J, Moretto T, Sandholt PE. 1996. Dynamical auroral morphology in relation to ionospheric plasma convection and geomagnetic activity: Signatures of magnetopause X line dynamics and flux transfer events. J Geophys Res 101(A6): 13275–13292. https://doi.org/10.1029/96JA00613. [CrossRef] [Google Scholar]
- Øieroset M, Sandholt PE, Denig WF, Cowley SWH. 1997. Northward interplanetary magnetic field cusp aurora and high-latitude magnetopause reconnection. J Geophys Res 102(A6): 11349–11362. https://doi.org/10.1029/97JA00559. [CrossRef] [Google Scholar]
- Omidi N, Sibeck D, Gutynska O, Trattner KJ. 2014. Magnetosheath filamentary structures formed by ion acceleration at the quasi-parallel bow shock. J Geophys Res Space Phys 119(4): 2593–2604. https://doi.org/10.1002/2013JA019587. [CrossRef] [Google Scholar]
- Omidi N, Sibeck DG. 2007. Flux transfer events in the cusp. Geophys Res Lett 34(4): L04106. https://doi.org/10.1029/2006GL028698. [CrossRef] [Google Scholar]
- Østgaard N, Mende SB, Frey HU, Sigwarth JB. 2005. Simultaneous imaging of the reconnection spot in the opposite hemispheres during northward IMF. Geophys Res Lett 32(21): 104. https://doi.org/10.1029/2005GL024491. [Google Scholar]
- Palmroth M, Ganse U, Pfau-Kempf Y, Battarbee M, Turc L, Brito T, Grandin M, Hoilijoki S, Sandroos A, von Alfthan S. 2018. Vlasov methods in space physics and astrophysics. Living Rev Comput Astrophys 4: 1. https://doi.org/10.1007/s41115-018-0003-2. [CrossRef] [Google Scholar]
- Palmroth M, Hoilijoki S, Juusola L, Pulkkinen T, Hietala H, Pfau-Kempf Y, Ganse U, von Alfthan S, Vainio R, Hesse M. 2017. Tail reconnection in the global magnetospheric context: Vlasiator first results. Ann Geophys 35: 1269–1274. https://doi.org/10.5194/angeo-35-1269-2017. [CrossRef] [Google Scholar]
- Paxton LJ, Morrison D, Strickland DJ, McHarg MG, Zhang Y, Wolven B, Kill H, Crowley G, Christensen AB, Meng C-I. 2003. The use of far ultraviolet remote sensing to monitor space weather. Adv Space Res 31(4): 813–818. https://doi.org/10.1016/S0273-1177(02)00886-4. [CrossRef] [Google Scholar]
- Pfau-Kempf Y, Battarbee M, Ganse U, Hoilijoki S, Turc L, von Alfthan S, Vainio R, Palmroth M. 2018. On the importance of spatial and velocity resolution in the hybrid-Vlasov modeling of collisionless shocks. Front Phys 6: 44. https://doi.org/10.3389/fphy.2018.00044. [CrossRef] [Google Scholar]
- Pitout F, Escoubet CP, Klecker B, Dandouras I. 2009. Cluster survey of the mid-altitude cusp - Part 2: Large-scale morphology. Ann Geophys 27(5): 1875–1886. https://doi.org/10.5194/angeo-27-1875-2009. [CrossRef] [Google Scholar]
- Pitout F, Escoubet CP, Klecker B, Rème H. 2006. Cluster survey of the mid-altitude cusp: 1. size, location, and dynamics. Ann Geophys 24(11): 3011–3026. https://doi.org/10.5194/angeo-24-3011-2006. [CrossRef] [Google Scholar]
- Pitout F, Escoubet CP, Taylor MGGT, Berchem J, Walsh AP. 2012. Overlapping ion structures in the mid-altitude cusp under northward IMF: signature of dual lobe reconnection? Ann Geophys 30(3): 489–501. https://doi.org/10.5194/angeo-30-489-2012. [CrossRef] [Google Scholar]
- Redmon RJ, Denig WF, Kilcommons LM, Knipp DJ. 2017. New DMSP database of precipitating auroral electrons and ions. J Geophys Res Space Phys 122(8): 9056–9067. https://doi.org/10.1002/2016JA023339. [CrossRef] [Google Scholar]
- Reiff PH, Hill TW, Burch JL. 1977. Solar wind plasma injection at the dayside magnetospheric cusp. J Geophys Res 82(4): 479. https://doi.org/10.1029/JA082i004p00479. [CrossRef] [Google Scholar]
- Rème H, Aoustin C, Bosqued JM, Dand Ouras I., Lavraud B., et al. 2001. First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. Ann Geophys 19: 1303–1354. https://doi.org/10.5194/angeo-19-1303-2001. [CrossRef] [Google Scholar]
- Robinson R, Zhang Y, Garcia-Sage K, Fang X, Verkhoglyadova OP, et al. 2019. Space weather modeling capabilities assessment: Auroral precipitation and high-latitude ionospheric electrodynamics. Space Weather 17(2): 212–215. https://doi.org/10.1029/2018SW002127. [CrossRef] [Google Scholar]
- Sandholt PE, Farrugia CJ, Moen J, Cowley SWH. 1998. Dayside auroral configurations: Responses to southward and northward rotations of the interplanetary magnetic field. J Geophys Res 103(A9): 20279–20296. https://doi.org/10.1029/98JA01541. [CrossRef] [Google Scholar]
- Sandholt PE, Farrugia CJ, Øieroset M, Stauning P, Cowley SWH. 1996. Auroral signature of lobe reconnection. Geophys Res Lett 23(14): 1725–1728. https://doi.org/10.1029/96GL01846. [CrossRef] [Google Scholar]
- Sarris TE, Talaat ER, Palmroth M, Dandouras I, Armandillo E, et al. 2020. Daedalus: A low-flying spacecraft for in situ exploration of the lower thermosphere-ionosphere. Geosci Instrum Methods Data Syst 9(1): 153–191. https://doi.org/10.5194/gi-9-153-2020. [CrossRef] [Google Scholar]
- Seppälä A, Clilverd MA, Beharrell MJ, Rodger CJ, Verronen PT, Andersson ME, Newnham DA. 2015. Substorm-induced energetic electron precipitation: Impact on atmospheric chemistry. Geophys Res Lett 42(19): 8172–8176. https://doi.org/10.1002/2015GL065523. [CrossRef] [Google Scholar]
- Shelley EG, Sharp RD, Johnson RG. 1976. He++ and H+ flux measurements in the day side cusp: Estimates of convection electric field. J Geophys Res 81(13): 2363. https://doi.org/10.1029/JA081i013p02363. [CrossRef] [Google Scholar]
- Shi J, Guo J, Dunlop M, Zhang T, Liu Z, Lucek E, Fazakerley A, Rème H, Dandouras I. 2012. Inter-hemispheric asymmetry of dependence of the cusp location on dipole tilt during northward IMF conditions. Ann Geophys 30(1): 21–26. https://doi.org/10.5194/angeo-30-21-2012. [CrossRef] [Google Scholar]
- Smith AM, Mitchell CN, Watson RJ, Meggs RW, Kintner PM, Kauristie K, Honary F. 2008. GPS scintillation in the high arctic associated with an auroral arc. Space Weather 6(3): S03D01. https://doi.org/10.1029/2007SW000349. [Google Scholar]
- Smith MF, Lockwood M. 1996. Earth’s magnetospheric cusps. Rev Geophys 34(2): 233–260. https://doi.org/10.1029/96RG00893. [CrossRef] [Google Scholar]
- Sonnerup BUO, Scheible M. 1998. Analysis methods for multi-spacecraft data. ISSI Scientific Report, chap. Minimum and maximum variance analysis. ESA Publications Division, Noordwijk, Netherlands. [Google Scholar]
- Sundberg T, Haynes CT, Burgess D, Mazelle CX. 2016. Ion Acceleration at the Quasi-parallel Bow Shock: Decoding the signature of injection. Astrophys J 820(1): 21. https://doi.org/10.3847/0004-637X/820/1/21. [CrossRef] [Google Scholar]
- Tan B, Lin Y, Perez JD, Wang XY. 2012. Global-scale hybrid simulation of cusp precipitating ions associated with magnetopause reconnection under southward IMF. J Geophys Res Space Phys 117(A3): 217. https://doi.org/10.1029/2011JA016871. [Google Scholar]
- Torrence C, Compo GP. 1998. A practical guide to wavelet analysis. Bull Am Meteorol Soc 79: 61–78. https://doi.org/10.1175/1520-0477(1998)079#0061:APGTWA#2.0.CO;2. [CrossRef] [Google Scholar]
- von Alfthan S, Pfau-Kempf Y, Sandroos A, Ganse U, Hannuksela OA, Honkonen I, Battarbee M, Koskela T, Pokhotelov D. 2020. fmihpc/vlasiator: Vlasiator. https://doi.org/10.5281/zenodo.3640593. [Google Scholar]
- von Alfthan S, Pokhotelov D, Kempf Y, Hoilijoki S, Honkonen I, Sandroos A, Palmroth M. 2014. Vlasiator: First global hybrid-Vlasov simulations of Earth’s foreshock and magnetosheath. J Atmos Sol Terr Phys 120: 24–35. https://doi.org/10.1016/j.jastp.2014.08.012. [CrossRef] [Google Scholar]
- Wang XY, Lin Y, Chang SW. 2009. Hybrid simulation of foreshock waves and ion spectra and their linkage to cusp energetic ions. J Geophys Res Space Phys 114(A6): A06203. https://doi.org/10.1029/2008JA013745. [Google Scholar]
- Xiao F, Zong Q, Su Z, Yang C, He Z, Wang Y, Gao Z. 2013. Determining the mechanism of cusp proton aurora. Scientific Rep 3: 1654. https://doi.org/10.1038/srep01654. [CrossRef] [Google Scholar]
- Yang ZW, Lembège B, Lu QM. 2011. Acceleration of heavy ions by perpendicular collisionless shocks: Impact of the shock front nonstationarity. J Geophys Res Space Phys 116(A10): A10202. https://doi.org/10.1029/2011JA016605. [Google Scholar]
- Yang ZW, Lu QM, Wang S. 2009. The evolution of the electric field at a nonstationary perpendicular shock. Phys Plasmas 16(12): 124,502. https://doi.org/10.1063/1.3275788. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.