Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
|
|
---|---|---|
Article Number | 23 | |
Number of page(s) | 23 | |
DOI | https://doi.org/10.1051/swsc/2020023 | |
Published online | 10 June 2020 |
- Ahn BH, Kroehl HW, Kamide Y, Kihn E. 2000. Universal time variations of the auroral electrojet indices. J Geophys Res 105: 267–275. https://doi.org/10.1029/1999JA900364. [CrossRef] [Google Scholar]
- Ahn BH, Moon G-H. 2003. Seasonal and universal time variations of the AU, AL and Dst indices. J Korean Ast Soc 36: S93–S99. [Google Scholar]
- Alexeev II, Belenkaya ES, Kalegaev VV, Feldstein Y-I, Grafe A. 1996. Magnetic storms and magnetotail currents. J Geophys Res 101: 7737–7747. https://doi.org/10.1029/95JA03509. [CrossRef] [Google Scholar]
- Allen JH, Kroehl HW. 1975. Spatial and temporal distributions of magnetic effects of auroral electrojets as derived from AE indices. J Geophys Res 80: 3667–3677. https://doi.org/10.1029/JA080i025p03667. [CrossRef] [Google Scholar]
- Bartels J. 1925. Eine universelle tagsperiode der erdmagnetischen aktivität. Meteorol Z 42: 147. [Google Scholar]
- Bartels J. 1949. The standardized index Ks and the planetary index Kp. IATME Bull 12: 97. [Google Scholar]
- Boller BR, Stolov HL. 1970. Kelvin-Helmholtz instability and the semiannual variation of geomagnetic activity. J Geophys Res 75: 6073. https://doi.org/10.1029/JA075i031p06073. [CrossRef] [Google Scholar]
- Broun JA. 1848. Observations in magnetism and meteorology made at Makerstoun in Scotland. Trans R Soc Edinburgh 18: 401–402. [Google Scholar]
- Chapman S, Bartels J. 1940. Geomagnetism, Vol. II: Analysis of the Data, and Physical Theories. Oxford Univ. Press, London. [Google Scholar]
- Caan MN, McPherron RL, Russell CT. 1973. Solar wind and substorm-related changes in the lobes of the geomagnetic tail. J Geophys Res 78(34): 8087–8096. https://doi.org/10.1029/ja078i034p08087. [CrossRef] [Google Scholar]
- Chambodut A, Marchaudon A, Menvielle M, El-Lemdani F, Lathuillere C. 2013. The K-derived MLT sector geomagnetic indices. Geophys Res Lett 40: 4808–4812. https://doi.org/10.1002/grl.50947. [CrossRef] [Google Scholar]
- Chandler MO, Fuselier SA, Lockwood M, Moore TE. 1999. Evidence of component magnetic merging equatorward of the cusp. J Geophys Res 104: 22623–22648. https://doi.org/10.1029/1999JA900175. [CrossRef] [Google Scholar]
- Chu X, McPherron RL, Hsu T-S, Angelopoulos V. 2015. Solar cycle dependence of substorm occurrence and duration: Implications for onset. J Geophys Res Space Phys 120: 2808–2818. https://doi.org/10.1002/2015JA021104. [CrossRef] [Google Scholar]
- Clauer CR, McPherron RL. 1974. Mapping the local time-universal time development of magnetospheric substorms using mid-latitude magnetic observations. J Geophys Res 79(19): 2811–2820. https://doi.org/10.1029/JA079i019p02811. [CrossRef] [Google Scholar]
- Cliver EW, Kamide Y, Ling AG. 2000. Mountains versus valleys: Semiannual variation of geomagnetic activity. J Geophys Res 105: 2413–2424. https://doi.org/10.1029/1999JA900439. [NASA ADS] [CrossRef] [Google Scholar]
- Cliver EW, Kamide Y, Ling AG. 2002. The semiannual variation of geomagnetic activity: phases and profiles for 130 years of aa data. J Atmos Sol Terr Phys 64: 47–53. https://doi.org/10.1016/s1364-6826(01)00093-1. [CrossRef] [Google Scholar]
- Cnossen I, Richmond AD. 2012. How changes in the tilt angle of the geomagnetic dipole affect the coupled magnetosphere-ionosphere-thermosphere system. J Geophys Res 117: A10317. https://doi.org/10.1029/2012JA018056. [Google Scholar]
- Cortie AL. 1912. Sunspots and terrestrial magnetic phenomena, 1898–1911. Mon Not Roy Astron Soc 73: 52–60. https://doi.org/10.1093/mnras/73.1.52. [NASA ADS] [CrossRef] [Google Scholar]
- Cowley SWH, Lockwood M. 1992. Excitation and decay of solar-wind driven flows in the magnetosphere-ionosphere system. Ann Geophys 10: 103–115. [Google Scholar]
- Crooker NU, Siscoe GL. 1986. On the limits of energy transfer through dayside merging. J Geophys Res 91: 13393–13397. https://doi.org/10.1029/JA091iA12p13393. [CrossRef] [Google Scholar]
- Danilov AA, Krymskii GF, Makarov GA. 2013. Geomagnetic activity as a reflection of processes in the magnetospheric tail: 1. The source of diurnal and semiannual variations in geomagnetic activity. Geomag. Aeron. 53: 441–447. https://doi.org/10.1134/S0016793213040051. [Google Scholar]
- Davis TN, Sugiura M. 1966. Auroral electrojet activity index AE and its universal time variations. J Geophys Res 71(3): 785–801. https://doi.org/10.1029/JZ071i003p00785. [CrossRef] [Google Scholar]
- de La Sayette P, Berthelier A. 1996. The am annual-diurnal variations 1959–1988: A 30-year evaluation. J Geophys Res 101(A5): 10653–10663. https://doi.org/10.1029/96JA00165. [CrossRef] [Google Scholar]
- de La Sayette P. 2004. Empirical simulations for the am annual-diurnal activity. J Geophys Res 109: A07207. https://doi.org/10.1029/2003JA010353. [CrossRef] [Google Scholar]
- Ebert RW, McComas DJ, Elliott HA, Forsyth RJ, Gosling JT. 2009. Bulk properties of the slow and fast solar wind and interplanetary coronal mass ejections measured by Ulysses: Three polar orbits of observations. J Geophys Res 114: A01109. https://doi.org/10.1029/2008JA013631. [NASA ADS] [CrossRef] [Google Scholar]
- Finch ID. 2008. The use of geomagnetic activity observations in studies of solar wind-magnetosphere coupling and centennial solar change, PhD thesis, Southampton University, Southampton, UK. [Google Scholar]
- Finch ID, Lockwood M. 2007. Solar wind-magnetosphere coupling functions on timescales of 1 day to 1 year. Ann Geophys 25: 495–506. https://doi.org/10.5194/angeo-25-495-2007. [CrossRef] [Google Scholar]
- Finch ID, Lockwood M, Rouillard AP. 2008. The effects of solar wind magnetosphere coupling recorded at different geomagnetic latitudes: separation of directly-driven and storage/release systems. Geophys Res Lett 35: L21105. https://doi.org/10.1029/2008GL035399. [CrossRef] [Google Scholar]
- Hajkowicz LA. 1992. Universal time effect in the occurrence of large-scale ionospheric disturbances. Planet Space Sci 40: 1093–1099. https://doi.org/10.1016/0032-0633(92)90038-p. [CrossRef] [Google Scholar]
- Hajkowicz LA. 1998. Longitudinal (UT) effect in the onset of auroral disturbances over two solar cycles as deduced from the AE-index. Ann Geophys 16(12): 1573–1579. https://doi.org/10.1007/s00585-998-1573-9. [CrossRef] [Google Scholar]
- Hundhausen AJ, Bame SJ, Montgomery MD. 1971. Variations of solar-wind plasma properties: Vela observations of a possible heliographic latitude-dependence. J Geophys Res 76: 5145–5154. https://doi.org/10.1029/ja076i022p05145. [CrossRef] [Google Scholar]
- Karlsson SBP, Opgenoorth HJ, Eglitis P, Kauristie K, Syrjäsuo M, Pulkkinen TI, Lockwood M, Nakamura R, Reeves G, Romanov S. 2000. Solar wind control of magnetospheric energy content: substorm quenching and multiple onsets. J Geophys Res 105: 5335–5356. https://doi.org/10.1029/1999JA900297. [CrossRef] [Google Scholar]
- Kivelson MG, Hughes WJ. 1990. On the threshold for triggering substorms. Planet Space Sci 38: 211–220. https://doi.org/10.1016/0032-0633(90)90085-5. [CrossRef] [Google Scholar]
- Klimenko MV, Klimenko VV, Bryukhanov VV. 2007. Numerical modeling of the equatorial electrojet UT-variation on the basis of the model GSM TIP. Adv Radio Sci 5: 385–392. [CrossRef] [Google Scholar]
- Kokubun S, McPherron RL, Russell CT. 1977. Triggering of substorms by solar wind discontinuities. J Geophys Res 82(1): 74–86. https://doi.org/10.1029/ja082i001p00074. [CrossRef] [Google Scholar]
- Kubyshkina M, Tsyganenko N, Semenov V, Kubyshkina D, Partamies N, Gordeev E. 2015. Further evidence for the role of magnetotail current shape in substorm initiation. Earth Planets Space 67: 139. https://doi.org/10.1186/s40623-015-0304-1. [CrossRef] [Google Scholar]
- Kuznetsova TV, Laptukhov AI. 2011. Contribution of geometry of interaction between interplanetary and terrestrial magnetic fields into global magnetospheric state and geomagnetic activity. Adv Space Res 47: 978–990. https://doi.org/10.1016/j.asr.2010.11.022. [CrossRef] [Google Scholar]
- Le Mouël J-L, Blanter E, Chulliat A, Shnirman M. 2004. On the semiannual and annual variations of geomagnetic activity and components. Ann Geophys 22: 3583–3588. https://doi.org/10.5194/angeo-22-3583-2004. [CrossRef] [Google Scholar]
- Lockwood M. 2013. Reconstruction and Prediction of Variations in the Open Solar Magnetic Flux and Interplanetary Conditions. Living Rev Sol Phys 10(4): 2013. https://doi.org/10.12942/lrsp-2013-4. [CrossRef] [Google Scholar]
- Lockwood M. 2019. Does adding solar wind Poynting flux improve the optimum solar wind – magnetosphere coupling function? J Geophys Res Space Phys 124(7): 5498–5515. https://doi.org/10.1029/2019JA026639. [CrossRef] [Google Scholar]
- Lockwood M, Cowley SWH, Freeman MP. 1990. The excitation of plasma convection in the high latitude ionosphere. J Geophys Res 95: 7961–7971. https://doi.org/10.1029/JA095iA06p07961. [CrossRef] [Google Scholar]
- Lockwood M, Owens MJ, Barnard LA, Bentley S, Scott CJ, Watt CE. 2016. On the origins and timescales of geoeffective IMF. Space Weather 14: 406–432. https://doi.org/10.1002/2016SW001375. [CrossRef] [Google Scholar]
- Lockwood M, Chambodut A, Barnard LA, Owens MJ, Clarke E, et al.. 2018a. A homogeneous aa index: 1. Secular variation. J Space Weather Space Clim 8: A53. https://doi.org/10.1051/swsc/2018038. [CrossRef] [Google Scholar]
- Lockwood M, Finch ID, Chambodut A, Barnard LA, Owens MJ, Clarke E. 2018b. A homogeneous aa index: 2. hemispheric asymmetries and the equinoctial variation. J Space Weather Space Clim 8: A58. https://doi.org/10.1051/swsc/2018044. [CrossRef] [Google Scholar]
- Lockwood M, Bentley S, Owens MJ, Barnard LA, Scott CJ, Watt CE, Allanson O. 2019a. The development of a space climatology: 1. Solar-wind magnetosphere coupling as a function of timescale and the effect of data gaps. Space Weather 17: 133–156. https://doi.org/10.1029/2018SW001856. [Google Scholar]
- Lockwood M, Bentley S, Owens MJ, Barnard LA, Scott CJ, Watt CE, Allanson O, Freeman MP. 2019b. The development of a space climatology: The distribution of power input into the magnetosphere on a 3-hourly timescale. Space Weather 17: 157–179. https://doi.org/10.1029/2018SW002016. [CrossRef] [Google Scholar]
- Lockwood M, Bentley S, Owens MJ, Barnard LA, Scott CJ, Watt CE, Allanson O, Freeman MP. 2019c. The development of a space climatology: 3. The evolution of distributions of space weather parameters with timescale. Space Weather 17: 180–209. https://doi.org/10.1029/2018SW002017. [CrossRef] [Google Scholar]
- Lockwood M, Chambodut A, Finch ID, Barnard LA, Owens MJ, Haines C. 2019d. Time-of-day / time-of-year response functions of planetary geomagnetic indices. J Space Weather Space Clim 9: A20. https://doi.org/10.1051/swsc/2019017. [Google Scholar]
- Lockwood M, Owens MJ, Macneil A. 2019e. On the origin of ortho-gardenhose heliospheric flux. Sol Phys 294: 58. https://doi.org/10.1007/s11207-019-1478-7. [CrossRef] [Google Scholar]
- Lu G, Richmond AD, Emery BA, Roble RG. 1995. Magnetosphere-ionosphere-thermosphere coupling: Effect of neutral winds on energy transfer and field-aligned current. J Geophys Res 100(A10): 19643–19659. https://doi.org/10.1029/95JA00766. [CrossRef] [Google Scholar]
- Lyatsky W, Newell PT, Hamza A. 2001. Solar illumination as the cause of the equinoctial preference for geomagnetic activity. Geophys Res Lett 28(12): 2353–2356. https://doi.org/10.1029/2000GL012803. [NASA ADS] [CrossRef] [Google Scholar]
- Mayaud P-N. 1971. Une mesure planétaire d’activité magnetique, basée sur deux observatoires antipodaux. Ann Geophys 27: 67–70. [Google Scholar]
- Mayaud P-N. 1972. The aa indices: A 100-year series characterizing the magnetic activity. J Geophys Res 77: 6870–6874. https://doi.org/10.1029/JA077i034p06870. [NASA ADS] [CrossRef] [Google Scholar]
- Mayaud P-N. 1980. Derivation, Meaning and Use of Geomagnetic Indices. Geophysical Monograph 22, American Geophysical Union, Washington, DC. https://doi.org/10.1029/GM022. [Google Scholar]
- McComas DJ, Ebert RW, Elliott HA, Goldstein BE, Gosling JT, Schwadron NA, Skoug RM. 2008. Weaker solar wind from the polar coronal holes and the whole Sun. Geophys Res Lett 35: L18103. https://doi.org/10.1029/2008GL034896. [CrossRef] [Google Scholar]
- McIntosh DH. 1959. On the annual variation of magnetic disturbances. Phil Trans Roy Soc London A 251(1001): 525–552. https://doi.org/10.1098/rsta.1959.001. [Google Scholar]
- McPherron RL, Baker DN, Pulkkinen TI, Hsu TS, Kissinger J, Chu X. 2013. Changes in solar wind–magnetosphere coupling with solar cycle, season, and time relative to stream interfaces. J Atmos Sol Terr Phys 99: 1–13. https://doi.org/10.1016/j.jastp.2012.09.003. [Google Scholar]
- Menvielle M, Berthelier A. 1991. The K-derived planetary indices: Description and availability. Rev Geophys 29(3): 415–432. https://doi.org/10.1029/91RG00994. [CrossRef] [Google Scholar]
- Mursula K, Karinen A. 2005. Explaining and correcting the excessive semiannual variation in the Dst index. Geophys Res Lett 32: L14107. https://doi.org/10.1029/2005GL023132. [CrossRef] [Google Scholar]
- Newell PT, Gjerloev JW. 2011a. Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. J Geophys Res 116: A12211. https://doi.org/10.1029/2011JA016779. [CrossRef] [Google Scholar]
- Newell PT, Gjerloev JW. 2011b. Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices. J Geophys Res 116: A12232. https://doi.org/10.1029/2011JA016936. [Google Scholar]
- Newell PT, Gjerloev JW. 2012. SuperMAG-based partial ring current indices. J Geophys Res 117: A05215. https://doi.org/10.1029/2012JA017586. [Google Scholar]
- Newell PT, Sotirelis T, Skura JP, Meng C-I, Lyatsky W. 2002. Ultraviolet insolation drives seasonal and diurnal space weather variations. J Geophys Res 107(A10): 1305. https://doi.org/10.1029/2001JA000296. [CrossRef] [Google Scholar]
- Nowada M, Shue J-H, Russell CT. 2009. Effects of dipole tilt angle on geomagnetic activity. Planet Space Sci 57(11): 1254–1259. https://doi.org/10.1016/j.pss.2009.04.007. [CrossRef] [Google Scholar]
- O’Brien TP, McPherron RL. 2002. Seasonal and diurnal variation of Dst dynamics. J Geophys Res 107(A11): 1341. https://doi.org/10.1029/2002JA009435. [CrossRef] [Google Scholar]
- Olson WP. 1969. The shape of the tilted magnetopause. J Geophys Res 74: 5642–5651. https://doi.org/10.1029/JA074i024p05642. [CrossRef] [Google Scholar]
- Perreault P, Akasofu S-I. 1978. Study of Geomagnetic Storms. Geophys J Roy Astronom Soc 54(3): 547–573. https://doi.org/10.1111/J.1365-246x.1978.Tb05494.X. [Google Scholar]
- Pinto O, Gonzalez WD. 1989. Energetic electron precipitation at the South Atlantic Magnetic Anomaly: a review. J Atmos Terr Phys 51(5): 351–365. https://doi.org/10.1016/0021-9169(89)90117-7. [CrossRef] [Google Scholar]
- Poblet FL, Azpilicueta F. 2018. Semiannual variation in radiation belts particle fluxes: Van Allen probes observations. Ann Geophys Discuss 98: 1–18. https://doi.org/10.5194/angeo-2018-98. [CrossRef] [Google Scholar]
- Poblet FL, Azpilicueta F, Lam HL. 2019. Semiannual variation of Pc5 ULF waves and relativistic electrons over two solar cycles of observations: comparison with predictions of the classical hypotheses. Ann Geophys. Discuss 157: 1–24. https://doi.org/10.5194/angeo-2019-157. [Google Scholar]
- Rosenberg RL, Coleman PJ Jr. 1969. Heliographic latitude dependence of the dominant polarity of the interplanetary magnetic field. J Geophys Res 74: 5611–5622. https://doi.org/10.1029/JA074i024p05611. [NASA ADS] [CrossRef] [Google Scholar]
- Russell CT. 1989. The universal time variation of geomagnetic activity. Geophys Res Lett 16(6): 555–558. https://doi.org/10.1029/gl016i006p00555. [CrossRef] [Google Scholar]
- Russell CT, McPherron RL. 1973. Semiannual variation of geomagnetic activity. J Geophys Res 78: 82–108. https://doi.org/10.1029/JA078i001p00092. [Google Scholar]
- Russell CT, Wang YL, Raeder J. 2003. Possible dipole tilt dependence of dayside magnetopause reconnection. Geophys Res Lett 30(18): 1937. https://doi.org/10.1029/2003GL017725. [CrossRef] [Google Scholar]
- Sabine E. 1852. On periodical laws discoverable in the mean effects of the larger magnetic disturbances, II. Philos Trans R Soc London 142: 103–124. https://doi.org/10.1098/rstl.1852.0009. [NASA ADS] [CrossRef] [Google Scholar]
- Sarris TE. 2019. Understanding the ionosphere thermosphere response to solar and magnetospheric drivers: status, challenges and open issues. Philos Trans R Soc London 377: 20180101. https://doi.org/10.1098/rsta.2018.0101. [Google Scholar]
- Schieldge JP, Siscoe GL. 1970. A correlation of the occurrence of simultaneous sudden magnetospheric compressions and geomagnetic bay onsets with selected geophysical indices. J Atmos Terr Phys 32(11): 1819–1830. https://doi.org/10.1016/0021-9169(70)90139-x. [CrossRef] [Google Scholar]
- Sergeev VA, Tsyganenko NA, Smirnov MV, Nikolaev AV, Singer H, Baumjohann W. 2011. Magnetic effects of the substorm current wedge in a “spread-out wire” model and their comparison with ground, geosynchronous, and tail lobe data. J Geophys Res 116: A07218. https://doi.org/10.1029/2011JA016471. [CrossRef] [Google Scholar]
- Siddiqui TA, Lühr H, Stolle C, Park J. 2015. Relation between stratospheric sudden warming and the lunar effect on the equatorial electrojet based on Huancayo recordings. Ann Geophys 33: 235–243. https://doi.org/10.5194/angeo-33-235-2015. [CrossRef] [Google Scholar]
- Svalgaard L. 1977. Geomagnetic activity: Dependence on solar wind parameters. In Coronal Holes and High Speed Wind Streams. Zirker JB, (Ed.). Report SU-IPR-699, California Institute For Plasma Research, Stanford University, pp. 371–441. . http://adsabs.harvard.edu/abs/1977chhs.conf..371S. [Google Scholar]
- Takalo J, Mursula K. 2001. A model for the diurnal universal time variation of the Dst index. J Geophys Res 106(A6): 10905–10913. https://doi.org/10.1029/2000JA000231. [CrossRef] [Google Scholar]
- Tanskanen EI. 2009. A comprehensive high-throughput analysis of substorms observed by IMAGE magnetometer network: Years 1993–2003 examined. J Geophys Res 114: A05204. https://doi.org/10.1029/2008JA013682. [CrossRef] [Google Scholar]
- Thébault E, Finlay CC, Beggan CD, Alken P, Aubert J, et al. 2015. International Geomagnetic Reference Field: the 12th generation. Earth Planet Space 67: 79. https://doi.org/10.1186/s40623-015-0228-9. [CrossRef] [Google Scholar]
- Vasyliunas VM, Kan JR, Siscoe GL, Akasofu S-I. 1982. Scaling relations governing magnetospheric energy transfer. Planet Space Sci 30: 359–365. https://doi.org/10.1016/0032-0633(82)90041-1. [CrossRef] [Google Scholar]
- Weigel RS. 2007. Solar wind time history contribution to the day-of-year variation in geomagnetic activity. J Geophys Res 112: A10207. https://doi.org/10.1029/2007JA012324. [CrossRef] [Google Scholar]
- Whang YC, Wang Y-M, Sheeley NR Jr, Burlaga LF. 2005. Global structure of the out-of-ecliptic solar wind. J Geophys Res 110: A03103. https://doi.org/10.1029/2004JA010875. [NASA ADS] [CrossRef] [Google Scholar]
- Yamazaki Y, Häusler K, Wild JA. 2016. Day-to-day variability of midlatitude ionospheric currents due to magnetospheric and lower atmospheric forcing. J Geophys Res Space Phys 121: 7067–7086. https://doi.org/10.1002/2016JA022817. [CrossRef] [Google Scholar]
- Yue C, Bortnik J, Li W, Ma Q, Wang C-P, Thorne RM, et al. 2019. Oxygen ion dynamics in the Earth’s ring current: Van Allen Probes observations. J Geophys Res Space Phys 124: 7786–7798. https://doi.org/10.1029/2019JA026801. [Google Scholar]
- Yue C, Zong QG, Zhang H, Wang YF, Yuan CJ, Pu ZY, Fu SY, Lui ATY, Yang B, Wang CR. 2010. Geomagnetic activity triggered by interplanetary shocks. J Geophys Res 115: A00I05. https://doi.org/10.1029/2010JA015356. [Google Scholar]
- Zhao H, Zong QG. 2012. Seasonal and diurnal variation of geomagnetic activity: Russell-McPherron effect during different IMF polarity and/or extreme solar wind conditions. J Geophys Res 117: A11222. https://doi.org/10.1029/2012JA017845. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.