Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
|
|
---|---|---|
Article Number | 24 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/swsc/2020024 | |
Published online | 23 June 2020 |
- Adams JH, Silberberg R, Tsao CH. 1981. Cosmic ray effects on microelectronics, part I: The near-earth particle environment. Tech. Rep. NRL Memorandum Report 4506, Washington, DC. URL https://apps.dtic.mil/dtic/tr/fulltext/u2/a103897.pdf. [Google Scholar]
- Adriani O, Barbarino GC, Bazilevskaya GA, Bellotti R, Boezio M, et al. 2014. The PAMELA mission: Heralding a new era in precision cosmic ray physics. Phys Rep 544(4): 323–370. https://doi.org/10.1016/j.physrep.2014.06.003. [NASA ADS] [CrossRef] [Google Scholar]
- Allison J, Amako K, Apostolakis J, Arce P, Asai M, et al. 2016. Recent developments in GEANT4. Nucl Instrum Methods Phys Res Sect A 835: 186–225. https://doi.org/10.1016/j.nima.2016.06.125. [Google Scholar]
- Anderson BJ, Smith RE. 1994. Natural orbital environment definition guidelines for use in aerospace vehicle development. Tech. Rep. NASA Technical Memorandum 4527, Huntsville, AL. URL https://ntrs.nasa.gov/search.jsp?R=19940031668 [Google Scholar]
- Band D, Matteson J, Ford L, Schaefer B, Palmer D, et al. 1993. BATSE observations of gamma-ray burst spectra. I - Spectral diversity. Astrophys J 413: 281–292. https://doi.org/10.1086/172995. [Google Scholar]
- Bindi V, AMS-02 Collaboration. 2015. Solar energetic particles measured by AMS-02. In: Proceedings of the 34th International Cosmic Ray Conference, The Hague, The Netherlands. URL https://ui.adsabs.harvard.edu/abs/2015ICRC...34...10B. [Google Scholar]
- Bruno A. 2017. Calibration of the GOES 13/15 high-energy proton detectors based on the PAMELA solar energetic particle observations. Space Weather 15(9): 1191–1202. https://doi.org/10.1002/2017SW001672. [CrossRef] [Google Scholar]
- Bruno A, Bazilevskaya GA, Boezio M, Christian ER, de Nolfo GA, et al. 2018. Solar energetic particle events observed by the PAMELA mission. Astrophys J 862(2): 97. https://doi.org/10.3847/1538-4357/aacc26. [Google Scholar]
- Crabb RL. 1994. Solar cell radiation damage. Radiat Phys Chem 43(1): 93–103. https://doi.org/10.1016/0969-806X(94)90204-6. [CrossRef] [Google Scholar]
- Dodd PE, Massengill LW. 2003. Basic mechanisms and modeling of single-event upset in digital microelectronics. IEEE Trans Nucl Sci 50(3): 583–602. https://doi.org/10.1109/TNS.2003.813129. [CrossRef] [Google Scholar]
- Facius R, Reitz G. 2007. Space weather impacts on space radiation protection, 289–352, Springer, Berlin, Heidelberg. http://doi.org/10.1007/978-3-540-34578-7_11. [Google Scholar]
- Feynman J, Gabriel S. 1996. High-energy charged particles in space at one astronomical unit. IEEE Trans Nucl Sci 43(2): 344–352. https://doi.org/10.1109/23.490754. [CrossRef] [Google Scholar]
- Feynman J, Armstrong TP, Dao-Gibner L, Silverman S. 1990. New interplanetary proton fluence model. J Spacecr Rock. 27: 403–410. https://doi.org/10.2514/3.26157. [CrossRef] [Google Scholar]
- Feynman J, Spitale G, Wang J, Gabriel S. 1993. Interplanetary proton fluence model – JPL 1991. J Geophys Res 98: 13. https://doi.org/10.1029/92JA02670. [CrossRef] [Google Scholar]
- Feynman J, Ruzmaikin A, Berdichevsky V. 2002. The JPL proton fluence model: an update. J Atmos Sol-Terr Phys 64(16): 1679–1686. https://doi.org/10.1016/S1364-6826(02)00118-9. [CrossRef] [Google Scholar]
- Fleetwood DM, Winokur PS. 2000. Radiation effects in the space telecommunications environment. In: Proceedings of the 22nd International Conference on Microelectronics, Vol. 1, Niš, Serbia, pp. 43–49. https://doi.org/10.1109/ICMEL.2000.840529. [Google Scholar]
- Gao X, Yang S, Feng Z. 2014. Radiation effects of space solar cells, Springer International Publishing, Cham, Switzerland, pp. 597–622. https://doi.org/10.1007/978-3-319-01988-8_20. [Google Scholar]
- Hellweg CE, Baumstark-Khan C. 2007. Getting ready for the manned mission to Mars: the astronauts’ risk from space radiation. Naturwissenschaften 94(7): 517–526. https://doi.org/10.1007/s00114-006-0204-0. [CrossRef] [Google Scholar]
- Hu S, Kim MY, McClellan GE, Cucinotta FA. 2009. Modeling the acute health effects of astronauts from exposure to large solar particle events. Health Phys 96(4): 465–476. https://doi.org/10.1097/01.HP.0000339020.92837.61. [CrossRef] [Google Scholar]
- Iucci N, Levitin AE, Belov AV, Eroshenko EA, Ptitsyna NG, Villoresi G, Chizhenkov GV, Dorman LI, Gromova LI, Parisi M. 2005. Space weather conditions and spacecraft anomalies in different orbits. Space Weather 3(1): S01,001. https://doi.org/10.1002/2003SW000056. [CrossRef] [Google Scholar]
- Jiggens PTA, Gabriel SB, Heynderickx D, Crosby N, Glover A, Hilgers A. 2012. ESA SEPEM project: Peak flux and fluence model. IEEE Trans Nucl Sci 59(4): 1066–1077. https://doi.org/10.1109/TNS.2012.2198242. [CrossRef] [Google Scholar]
- Jiggens P, Heynderickx D, Sandberg I, Truscott P, Raukunen O, Vainio R. 2018a. Updated model of the solar energetic proton environment in space. J Space Weather Space Clim 8: A31. https://doi.org/10.1051/swsc/2018010. [Google Scholar]
- Jiggens P, Varotsou A, Truscott P, Heynderickx D, Lei F, Evans H, Daly E. 2018b. The solar accumulated and peak proton and heavy ion radiation environment (SAPPHIRE) model. IEEE Trans Nucl Sci 65(2): 698–711. https://doi.org/10.1109/TNS.2017.2786581. [CrossRef] [Google Scholar]
- Kennedy AR. 2014. Biological effects of space radiation and development of effective countermeasures. Life Sci Space Res 1: 10–43. https://doi.org/10.1016/j.lssr.2014.02.004. [CrossRef] [Google Scholar]
- King JH. 1974. Solar proton fluences for 1977–1983 space missions. J Spacecr Rock. 11: 401. https://doi.org/10.2514/3.62088. [CrossRef] [Google Scholar]
- Klein K-L, Dalla S. 2017. Acceleration and propagation of solar energetic particles. Space Sci Rev 212(3): 1107–1136. https://doi.org/10.1007/s11214-017-0382-4. [CrossRef] [Google Scholar]
- Mewaldt RA, Cohen CMS, Labrador AW, Leske RA, Mason GM, Desai MI, Looper MD, Mazur JE, Selesnick RS, Haggerty DK. 2005. Proton, helium, and electron spectra during the large solar particle events of October–November 2003. J Geophys Res 110: A09S18. https://doi.org/10.1029/2005JA011038. [CrossRef] [Google Scholar]
- Mewaldt RA, Looper MD, Cohen CMS, Haggerty DK, Labrador AW, Leske RA, Mason GM, Mazur JE, von Rosenvinge TT. 2012. Energy spectra, composition, and other properties of ground-level events during solar cycle 23. Space Sci Rev 171: 97–120. https://doi.org/10.1007/s11214-012-9884-2. [CrossRef] [Google Scholar]
- Mishev A, Usoskin I, Raukunen O, Paassilta M, Valtonen E, Kocharov L, Vainio R. 2018. First analysis of ground-level enhancement (GLE) 72 on 10 September 2017: Spectral and anisotropy characteristics. Sol Phys 293(10): 136. https://doi.org/10.1007/s11207-018-1354-x. [CrossRef] [Google Scholar]
- Nymmik RA. 1998. Radiation environment induced by cosmic ray particle fluxes in the international space station orbit according to recent galactic and solar cosmic ray models. Adv Space Res 21: 1689–1698. https://doi.org/10.1016/S0273-1177(98)00015-5. [CrossRef] [Google Scholar]
- Nymmik RA. 1999. Probabilistic model for fluences and peak fluxes of solar energetic particles. Radiat Meas 30(3): 287–296. https://doi.org/10.1016/S1350-4487(99)00065-7. [CrossRef] [Google Scholar]
- Nymmik RA. 2007. Improved environment radiation models. Adv Space Res 40(3): 313–320. https://doi.org/10.1016/j.asr.2006.12.028. [CrossRef] [Google Scholar]
- Onsager T, Grubb R, Kunches J, Matheson L, Speich D, Zwickl R, Sauer H. 1996. Operational uses of the GOES energetic particle detectors. In: Proc. SPIE 2812, GOES-8 and Beyond, Washwell ER (Ed.), pp. 281–290. https://doi.org/10.1117/12.254075. [Google Scholar]
- Paassilta M, Raukunen O, Vainio R, Valtonen E, Papaioannou A, et al. 2017. Catalogue of 55–80 MeV solar proton events extending through solar cycles 23 and 24. J Space Weather Space Clim 7: A14. https://doi.org/10.1051/swsc/2017013. [CrossRef] [Google Scholar]
- Panametrics, Inc. 1986. Report on the proton calibration of HEPADs SN6 and SN9 at the alternating gradient synchrotron of Brookhaven National Laboratory. Tech. Rep. PANA-NOAA-CAL1, 221 Crescent Street, Waltham, MA. [Google Scholar]
- Panametrics, Inc. 1990. Report on the proton calibration of HEPAD SN 002 consisting of HEPAD: FAC PN 571774-01, serial no. 002 at the alternating gradient synchrotron of Brookhaven National Laboratory. Tech. Rep. NXT-CAL-107, 221 Crescent Street, Waltham, MA. [Google Scholar]
- Papaioannou A, Sandberg I, Anastasiadis A, Kouloumvakos A, Georgoulis MK, Tziotziou K, Tsiropoula G, Jiggens P, Hilgers A. 2016. Solar flares, coronal mass ejections and solar energetic particle event characteristics. J Space Weather Space Clim 6(27): A42. https://doi.org/10.1051/swsc/2016035. [CrossRef] [EDP Sciences] [Google Scholar]
- Parsons JL, Townsend LW. 2000. Interplanetary crew dose rates for the August 1972 solar particle event. Radiat Res 153(6): 729–733. https://doi.org/10.1667/0033-7587(2000)153[0729:ICDRFT]2.0.CO;2. [CrossRef] [Google Scholar]
- Petersen EL. 1996. Approaches to proton single-event rate calculations. IEEE Trans Nucl Sci 43(2): 496–504. https://doi.org/10.1109/23.490896. [CrossRef] [Google Scholar]
- Raukunen O, Vainio R, Tylka AJ, Dietrich WF, Jiggens P, Heynderickx D, Dierckxsens M, Crosby N, Ganse U, Siipola R. 2018. Two solar proton fluence models based on ground level enhancement observations. J Space Weather Space Clim 8: A04. https://doi.org/10.1051/swsc/2017031. [CrossRef] [EDP Sciences] [Google Scholar]
- Reames DV. 1999. Particle acceleration at the Sun and in the heliosphere. Space Sci Rev 90: 413–491. https://doi.org/10.1023/A:1005105831781. [NASA ADS] [CrossRef] [Google Scholar]
- Reames DV. 2013. The two sources of solar energetic particles. Space Sci Rev 175: 53–92. https://doi.org/10.1007/s11214-013-9958-9. [Google Scholar]
- Rinehart MC. 1978. Cerenkov counter for spacecraft application. Nucl Instrum Methods Phys Res Sect A 154(2): 303–316. https://doi.org/10.1016/0029-554X(78)90414-7. [CrossRef] [Google Scholar]
- Sauer HH. 1993. GOES observations of energetic protons to E>685 MeV: Description and data comparison. In: Proceedings of the 23rd International Cosmic Ray Conference, Leahy DA, Hicks RB, Venkatesan D (Eds.), Vol. 3, Calgary, Canada, pp. 250. URL https://ui.adsabs.harvard.edu/abs/1993ICRC....3..250S. [Google Scholar]
- Sellers FB, Hanser FA. 1996. Design and calibration of the GOES-8 particle sensors: The EPS and HEPAD. In: Proc. SPIE 2812, GOES-8 and Beyond, Washwell ER (Ed.), pp. 353–364. https://doi.org/10.1117/12.254083. [Google Scholar]
- Sexton FW. 2003. Destructive single-event effects in semiconductor devices and ICs. IEEE Trans Nucl Sci 50(3): 603–621. https://doi.org/10.1109/TNS.2003.813137. [CrossRef] [Google Scholar]
- Smart DF, Shea MA. 1999. Comment on the use of GOES solar proton data and spectra in solar proton dose calculations. Radiat Meas 30(3): 327–335. https://doi.org/10.1016/S1350-4487(99)00059-1. [CrossRef] [Google Scholar]
- Space Systems/Loral. 1996. GOES I-M DataBook. Tech. Rep. DRL 101-08. [Google Scholar]
- Tylka AJ, Dietrich WF. 2009. A new and comprehensive analysis of proton spectra in Ground-Level Enhanced (GLE) solar particle events. In: Proceedings of the 31st International Cosmic Ray Conference, Giller M, Szabelski J (Eds.), Łódź, Poland. URL http://icrc2009.uni.lodz.pl/proc/pdf/icrc0273.pdf. [Google Scholar]
- Tylka AJ, Adams JH, Boberg PR, Brownstein B, Dietrich WF, Flueckiger EO, Petersen EL, Shea MA, Smart DF, Smith EC. 1997. CREME96: A revision of the cosmic ray effects on micro-electronics code. IEEE Trans Nucl Sci 44(6): 2150–2160. https://doi.org/10.1109/23.659030. [NASA ADS] [CrossRef] [Google Scholar]
- Tylka AJ, Cohen CMS, Dietrich WF, Lee MA, Maclennan CG, Mewaldt RA, Ng CK, Reames DV. 2005. Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events. Astrophys J 625: 474–495. https://doi.org/10.1086/429384. [CrossRef] [Google Scholar]
- Tylka AJ, Cohen CMS, Dietrich WF, Lee MA, Maclennan CG, Mewaldt RA, Ng CK, Reames DV. 2006. A comparative study of ion characteristics in the large gradual solar energetic particle events of 2002 April 21 and 2002 August 24. Astrophys J Suppl Ser 164(2): 536–551. https://doi.org/10.1086/503203. [Google Scholar]
- Vainio R, Desorgher L, Heynderickx D, Storini M, Flückiger E, et al. 2009. Dynamics of the Earth’s particle radiation environment. Space Sci Rev 147: 187–231. https://doi.org/10.1007/s11214-009-9496-7. [CrossRef] [Google Scholar]
- Vainio R, Raukunen O, Tylka AJ, Dietrich WF, Afanasiev A. 2017. Why is solar cycle 24 an inefficient producer of high-energy particle events? Astron Astrophys 604: A47. https://doi.org/10.1051/0004-6361/201730547. [CrossRef] [EDP Sciences] [Google Scholar]
- Van Allen JA, Baker DN, Randall BA, Sentman DD. 1974. The magnetosphere of Jupiter as observed with Pioneer 10: 1. Instrument and principal findings. J Geophys Res 79(25): 3559. https://doi.org/10.1029/JA079i025p03559. [CrossRef] [Google Scholar]
- Xapsos MA, Summers GP, Burke EA. 1998a. Extreme value analysis of solar energetic proton peak fluxes. Sol Phys 183(1): 157–164. https://doi.org/10.1023/A:1005075421711. [CrossRef] [Google Scholar]
- Xapsos MA, Summers GP, Burke EA. 1998b. Probability model for peak fluxes of solar proton events. IEEE Trans Nucl Sci 45(6): 2948–2953. https://doi.org/10.1109/23.736551. [CrossRef] [Google Scholar]
- Xapsos MA, Barth JL, Stassinopoulos EG, Burke EA, Gee GB. 1999a. Space environment effects: Model for emission of solar protons (ESP): Cumulative and worst case event fluences. Tech. Rep.. URL https://ui.adsabs.harvard.edu/abs/1999STIN...0021507X. [Google Scholar]
- Xapsos MA, Summers GP, Barth JL, Stassinopoulos EG, Burke EA. 1999b. Probability model for worst case solar proton event fluences. IEEE Trans Nucl Sci 46(6): 1481–1485. https://doi.org/10.1109/23.819111. [NASA ADS] [CrossRef] [Google Scholar]
- Xapsos MA, Summers GP, Barth JL, Stassinopoulos EG, Burke EA. 2000. Probability model for cumulative solar proton event fluences. IEEE Trans Nucl Sci 47(3): 486–490. https://doi.org/10.1109/23.856469. [NASA ADS] [CrossRef] [Google Scholar]
- Xapsos MA, Stauffer C, Gee GB, Barth JL, Stassinopoulos EG, McGuire RE. 2004. Model for solar proton risk assessment. IEEE Trans Nucl Sci 51(6): 3394–3398. https://doi.org/10.1109/TNS.2004.839159. [CrossRef] [Google Scholar]
- Xapsos MA, Stauffer C, Jordan T, Barth JL, Mewaldt RA. 2007. Model for cumulative solar heavy ion energy and linear energy transfer spectra. IEEE Trans Nucl Sci 54(6): 1985–1989. https://doi.org/10.1109/TNS.2007.910850. [CrossRef] [Google Scholar]
- Zhao L, Zhang M, Rassoul HK. 2016. Double power laws in the event-integrated solar energetic particle spectrum. Astrophys J 821(1): 62. https://doi.org/10.3847/0004-637X/821/1/62. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.