Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
|
|
---|---|---|
Article Number | 30 | |
Number of page(s) | 24 | |
DOI | https://doi.org/10.1051/swsc/2020033 | |
Published online | 16 July 2020 |
- Adebesin BO. 2016. Investigation into the linear relationship between the AE, Dst and ap indices during different magnetic and solar activity conditions. Acta Geod Geophys 51(2): 315–331. https://doi.org/10.1007/s40328-015-0128-2. [CrossRef] [Google Scholar]
- Bargatze LFB, McPherron RL, Baker DN. 1986. Solar wind-magnetosphere energy input functions. In: Solar wind-magnetosphere coupling, Kamide Y., Slavin J.A. (Eds.), Terra Scientific Publishing Company, Tokyo, Japan, and D. Reidel Publishing Company, Dordrecht, Holland, pp. 101–109. https://doi.org/10.1007/978-94-009-4722-1_7. [Google Scholar]
- Boudouridis A, Zesta E, Lyons LR, Anderson PC, Lummerzheim D. 2005. Enhanced solar wind geoeffectiveness after a sudden increase in dynamic pressure during southward IMF orientation. J Geophys Res 110: A05214. https://doi.org/10.1029/2004JA010704. [NASA ADS] [CrossRef] [Google Scholar]
- Caan MN, McPherron RL, Russell CT. 1973. Solar wind and substorm-related changes in the lobes of the geomagnetic tail. J Geophys Res 78(34): 8087–8096. https://doi.org/10.1029/ja078i034p08087. [CrossRef] [Google Scholar]
- Chambodut A, Marchaudon A, Menvielle M, El-Lemdani F, Lathuillere C. 2013. The K-derived MLT sector geomagnetic indices. Geophys Res Lett 40: 4808–4812. https://doi.org/10.1002/grl.50947. [CrossRef] [Google Scholar]
- Chandler MO, Fuselier SA, Lockwood M, Moore TE. 1999. Evidence of component magnetic merging equatorward of the cusp. J Geophys Res 104: 22623–22648. https://doi.org/10.1029/1999JA900175. [CrossRef] [Google Scholar]
- Chu X, McPherron RL, Hsu T-S, Angelopoulos V. 2015. Solar cycle dependence of substorm occurrence and duration: Implications for onset. J Geophys Res Space Phys 120: 2808–2818. https://doi.org/10.1002/2015JA021104. [CrossRef] [Google Scholar]
- Cliver EW, Kamide Y, Ling AG. 2000. Mountains versus valleys: Semiannual variation of geomagnetic activity. J Geophys Res 105: 2413–2424. https://doi.org/10.1029/1999JA900439. [NASA ADS] [CrossRef] [Google Scholar]
- Cowley SWH. 1991. Acceleration and heating of space plasmas - Basic concepts. Ann Geophys 9: 176–187. [Google Scholar]
- Cowley SWH, Lockwood M. 1992. Excitation and decay of solar-wind driven flows in the magnetosphere-ionosphere system. Ann Geophys 10: 103–115. [Google Scholar]
- Crooker NU, Cliver EW, Tsurutani BT. 1992. The semiannual variation of great geomagnetic storms and the postshock Russell-Mcpherron effect preceding coronal mass ejecta. Geophys Res Lett 19(5): 429–432. https://doi.org/10.1029/92GL00377. [CrossRef] [Google Scholar]
- de La Sayette P, Berthelier A. 1996. The am annual-diurnal variations 1959–1988: A 30-year evaluation. J Geophys Res 101(A5): 10653–10663. https://doi.org/10.1029/96JA00165. [CrossRef] [Google Scholar]
- Echer E, Alves MV, Gonzalez WD. 2005. A statistical study of magnetic cloud parameters and geoeffectiveness. J Atmos Terr Phys 67(10): 839–852. https://doi.org/10.1016/j.jastp.2005.02.010. [CrossRef] [Google Scholar]
- Finch ID, Lockwood M. 2007. Solar wind-magnetosphere coupling functions on timescales of 1 day to 1 year. Ann Geophys 25: 495–506. https://doi.org/10.5194/angeo-25-495-2007. [CrossRef] [Google Scholar]
- Finch ID, Lockwood M, Rouillard AP. 2008. The effects of solar wind magnetosphere coupling recorded at different geomagnetic latitudes: Separation of directly-driven and storage/release systems. Geophys Res Lett 35: L21105. https://doi.org/10.1029/2008GL035399. [CrossRef] [Google Scholar]
- Karlsson SBP, Opgenoorth HJ, Eglitis P, Kauristie K, Syrjäsuo M, Pulkkinen TI, Lockwood M, Nakamura R, Reeves G, Romanov S. 2000. Solar wind control of magnetospheric energy content: substorm quenching and multiple onsets. J Geophys Res 105: 5335–5356. https://doi.org/10.1029/1999JA900297. [CrossRef] [Google Scholar]
- Kilpua EKJ, Balogh A, von Steiger R, Liu YD. 2017. Geoeffective properties of solar transients and stream interaction regions. Space Sci Rev 212(3/4): 1271–1314. https://doi.org/10.1007/s11214-017-0411-3. [Google Scholar]
- Kokubun S, McPherron RL, Russell CT. 1977. Triggering of substorms by solar wind discontinuities. J Geophys Res 82(1): 74–86. https://doi.org/10.1029/ja082i001p00074. [CrossRef] [Google Scholar]
- Lee D-Y, Lyons LR, Yumoto K. 2004. Sawtooth oscillations directly driven by solar wind dynamic pressure enhancements. J Geophys Res 109: A04202. https://doi.org/10.1029/2003JA010246. [Google Scholar]
- Le Mouël J-L, Blanter E, Chulliat A, Shnirman M. 2004. On the semiannual and annual variations of geomagnetic activity and components. Ann Geophys 22: 3583–3588. https://doi.org/10.5194/angeo-22-3583-2004. [CrossRef] [Google Scholar]
- Li D, Yao S. 2020. Stronger southward magnetic field and geoeffectiveness of ICMEs containing prominence materials measured from 1998 to 2011. Astrophys J 891(1): 79. https://doi.org/10.3847/1538-4357/ab7197. [CrossRef] [Google Scholar]
- Lockwood M. 1991. On flow reversal boundaries and cross-cap potential in average models of high latitude convection. Planet Space Sci 39: 397–409. https://doi.org/10.1016/0032-0633(91)90002-R. [CrossRef] [Google Scholar]
- Lockwood M. 2004. Solar outputs, their variations and their effects of Earth. In: “The Sun, Solar Analogs and the Climate”, Proc. Saas‐Fee Advanced Course, 34 by J.D. Haigh, M. Lockwood and M.S. Giampapa, Rüedi I., Güdel M., Schmutz W. (Eds.), Springer, pp. 107–304. [Google Scholar]
- Lockwood M. 2013. Reconstruction and prediction of variations in the open solar magnetic flux and interplanetary conditions. Liv Rev Sol Phys 10: 4. https://doi.org/10.12942/lrsp-2013-4. [Google Scholar]
- Lockwood M. 2019. Does adding solar wind Poynting flux improve the optimum solar wind – magnetosphere coupling function? J Geophys Res Space Phys 124(7): 5498–5515. https://doi.org/10.1029/2019JA026639. [CrossRef] [Google Scholar]
- Lockwood M, Lanchester BS, Morley SK, Throp K, Milan SE, Lester M, Frey HU. 2006. Modeling the observed proton aurora and ionospheric convection responses to changes in the IMF clock angle: 2. Persistence of ionospheric convection. J Geophys Res 111: A02306. https://doi.org/10.1029/2003JA010307. [Google Scholar]
- Lockwood M, Hairston MR, Finch ID, Rouillard AP. 2009. Transpolar voltage and polar cap flux during the substorm cycle and steady convection events. J Geophys Res 114: A01210. https://doi.org/10.1029/2008JA013697. [Google Scholar]
- Lockwood M, Nevanlinna H, Barnard L, Owens MJ, Harrison RG, Rouillard AP, Scott CJ. 2014. Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the Past 167 years: 4. Near-Earth solar wind speed, IMF, and open solar flux. Ann Geophys 32: 383–399. https://doi.org/10.5194/angeo-32-383-2014. [Google Scholar]
- Lockwood M, Owens MJ, Barnard LA, Bentley S, Scott CJ, Watt CE. 2016. On the origins and timescales of geoeffective IMF. Space Weather 14: 406–432. https://doi.org/10.1002/2016SW001375. [CrossRef] [Google Scholar]
- Lockwood M, Bentley S, Owens MJ, Barnard LA, Scott CJ, Watt CE, Allanson O. 2019a. The development of a space climatology: 1. Solar-wind magnetosphere coupling as a function of timescale and the effect of data gaps. Space Weather 17: 133–156. https://doi.org/10.1029/2018SW001856. [Google Scholar]
- Lockwood M, Bentley S, Owens MJ, Barnard LA, Scott CJ, Watt CE, Allanson O, Freeman MP. 2019b. The development of a space climatology: 2. The distribution of power input into the magnetosphere on a 3-hourly timescale. Space Weather 17: 157–179. https://doi.org/10.1029/2018SW002016. [CrossRef] [Google Scholar]
- Lockwood M, Bentley S, Owens MJ, Barnard LA, Scott CJ, Watt CE, Allanson O, Freeman MP. 2019c. The development of a space climatology: 3. The evolution of distributions of space weather parameters with timescale. Space Weather 17: 180–209. https://doi.org/10.1029/2018SW002017. [CrossRef] [Google Scholar]
- Lockwood M, Chambodut A, Finch ID, Barnard LA, Owens MJ, Haines C. 2019d. Time-of-day/time-of-year response functions of planetary geomagnetic indices. J Space Weather Space Clim 9: A20. https://doi.org/10.1051/swsc/2019017. [Google Scholar]
- Lockwood M, Owens MJ, Barnard LA, Haines C, Scott CJ, McWilliams KA, Coxon JC. 2020. Semi-annual, annual and Universal Time variations in the magnetosphere and in geomagnetic activity: 1. Geomagnetic data. J Space Weather Space Clim 10: 23. https://doi.org/10.1051/swsc/2020023. [Google Scholar]
- Lühr H, Lockwood M, Sandholt PA, Hansen TL, Moretto T. 1996. Multi-instrument ground-based observations of a travelling convection vortex event. Ann Geophys 14: 162–181. https://doi.org/10.1007/s00585-996-0162-z. [CrossRef] [Google Scholar]
- Lukianova R. 2003. Magnetospheric response to sudden changes in solar wind dynamic pressure inferred from polar cap index. J Geophys Res 108(A12): 1428. https://doi.org/10.1029/2002JA009790. [CrossRef] [Google Scholar]
- Mayaud P-N. 1980. Derivation, meaning and use of geomagnetic indices. In: Geophysical monograph, 22. American Geophysical Union, Washington, DC. https://doi.org/10.1029/GM022. [Google Scholar]
- McPherron RL, Baker DN, Pulkkinen TI, Hsu TS, Kissinger J, Chu X. 2013. Changes in solar wind–magnetosphere coupling with solar cycle, season, and time relative to stream interfaces. J Atmos Sol-Terr Phys 99: 1–13. https://doi.org/10.1016/j.jastp.2012.09.003. [CrossRef] [Google Scholar]
- Morley SK, Lockwood M. 2006. A numerical model of the ionospheric signatures of time-varying magnetic reconnection: 3. Quasi-instantaneous convection responses in the Cowley-Lockwood paradigm. Ann Geophys 24: 961–972. https://doi.org/10.5194/angeo-24-961-2006. [CrossRef] [Google Scholar]
- Palmroth M, Pulkkinen TI, Janhunen P, McComas DJ, Smith CW, Koskinen HEJ. 2004. Role of solar wind dynamic pressure in driving ionospheric Joule heating. J Geophys Res 109: A11302. https://doi.org/10.1029/2004JA010529. [CrossRef] [Google Scholar]
- Pulkkinen TI, Dimmock AP, Lakka A, Osmane A, Kilpua E, Myllys M, Tanskanen EI, Viljanen A. 2016. Magnetosheath control of solar wind–magnetosphere coupling efficiency. J Geophys Res Space Phys 121: 8728–8739. https://doi.org/10.1002/2016JA023011. [CrossRef] [Google Scholar]
- Russell CT, McPherron RL. 1973. Semiannual variation of geomagnetic activity. J Geophys Res 78: 82–108. https://doi.org/10.1029/JA078i001p00092. [Google Scholar]
- Schieldge JP, Siscoe GL. 1970. A correlation of the occurrence of simultaneous sudden magnetospheric compressions and geomagnetic bay onsets with selected geophysical indices. J Atmos Terr Phys 32(11): 1819–1830. https://doi.org/10.1016/0021-9169(70)90139-x. [CrossRef] [Google Scholar]
- Stauning P, Troshichev OA. 2008. Polar cap convection and PC index during sudden changes in solar wind dynamic pressure. J Geophys Res 113: A08227. https://doi.org/10.1029/2007JA012783. [CrossRef] [Google Scholar]
- Taylor JR, Lester M, Yeoman TK. 1994. A superposed epoch analysis of geomagnetic storms. Ann Geophys 12(7): 612–624. https://doi.org/10.1007/s00585-994-0612-4. [CrossRef] [Google Scholar]
- Vasyliunas VM, Kan JR, Siscoe GL, Akasofu S-I. 1982. Scaling relations governing magnetospheric energy transfer. Planet Space Sci 30: 359–365. https://doi.org/10.1016/0032-0633(82)90041-1. [CrossRef] [Google Scholar]
- Webb DF, Cliver EW, Crooker NU, St. Cyr OC, Thompson BJ. 2000. Relationship of halo coronal mass ejections, magnetic clouds, and magnetic storms. J Geophys Res Space Phys 105(A4): 7491–7508. https://doi.org/10.1029/1999JA000275. [NASA ADS] [CrossRef] [Google Scholar]
- Xie H, Gopalswamy N, Manoharan PK, Lara A, Yashiro S, Lepri S. 2006. Long-lived geomagnetic storms and coronal mass ejections. J Geophys Res Space Phys 111(A1): A01103. https://doi.org/10.1029/2005JA011287. [Google Scholar]
- Yue C, Zong QG, Zhang H, Wang YF, Yuan CJ, Pu ZY, Fu SY, Lui ATY, Yang B, Wang CR. 2010. Geomagnetic activity triggered by interplanetary shocks. J Geophys Res 115: A00I05. https://doi.org/10.1029/2010JA015356. [Google Scholar]
- Zhao H, Zong QG. 2012. Seasonal and diurnal variation of geomagnetic activity: Russell-McPherron effect during different IMF polarity and/or extreme solar wind conditions. J Geophys Res 117: A11222. https://doi.org/10.1029/2012JA017845. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.