Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
Topical Issue - Space Weather Instrumentation
|
|
---|---|---|
Article Number | 31 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/swsc/2020032 | |
Published online | 05 August 2020 |
- Aulanier G, Démoulin P, Schrijver CJ, Janvier M, Pariat E, Schmieder B. 2013. The standard flare model in three dimensions. II. Upper limit on solar flare energy. A&A 549: A66. https://doi.org/10.1051/0004-6361/201220406. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Bertello L, Pevtsov AA, Tlatov A, Singh J. 2016. Solar Ca II K observations. Asian J Phys 25(3): 295–310. [Google Scholar]
- Chatterjee S, Banerjee D, Ravindra B. 2016. A butterfly diagram and carrington maps for century-long CA II K spectroheliograms from the Kodaikanal observatory. Astrophys J 827(1): 87. https://doi.org/10.3847/0004-637X/827/1/87. [NASA ADS] [CrossRef] [Google Scholar]
- Chen H, Duan Y, Yang J, Yang B, Dai J. 2018. Witnessing tether-cutting reconnection at the onset of a partial eruption. Astrophys J 869(1): 78. https://doi.org/10.3847/1538-4357/aaead1. [NASA ADS] [CrossRef] [Google Scholar]
- Clette F, Svalgaard L, Vaquero JM, Cliver EW. 2015. Revisiting the sunspot number. Sol Act Cycle 53: 35. https://doi.org/10.1007/978-1-4939-2584-1_3. [CrossRef] [Google Scholar]
- Delbouille L, Roland G, Neven L. 1973. Atlas photometrique du spectre solaire de [lambda] 3000 a [lambda] 10000, Université de Liège. [Google Scholar]
- Démoulin P, Aulanier G. 2010. Criteria for flux rope eruption: Non-equilibrium versus Torus instability. Astrophys J 718(2): 1388–1399. https://doi.org/10.1088/0004-637X/718/2/1388. [Google Scholar]
- Deng Y, Lin Y, Schmieder B, Engvold O. 2002. Filament activation and magnetic reconnection. Sol Phys 209(1): 153–170. https://doi.org/10.1023/A:1020924406991. [NASA ADS] [CrossRef] [Google Scholar]
- Filippov B, Zagnetko A. 2008. Prominence height shows the proximity of an ejection. J Atmos Solr-Terr Phys 70(2–4): 614–620. https://doi.org/10.1016/j.jastp.2007.08.035. [Google Scholar]
- Fletcher L, Dennis BR, Hudson HS, Krucker S, Phillips K, et al. 2011. An observational overview of solar flares. Space Sci Rev 159(1–4): 19–106. https://doi.org/10.1007/s11214-010-9701-8. [Google Scholar]
- Gao F, Han L. 2012. Implementing the Nelder-Mead simplex algorithm with adaptive parameters. Comput Optim Appl 51(1): 259–277. https://doi.org/10.1007/s10589-010-9329-3. [Google Scholar]
- Gilbert HR, Daou AG, Young D, Tripathi D, Alexander D. 2008. The Filament-Moreton wave interaction of 2006 December 6. Astrophys J 685(1): 629–645. https://doi.org/10.1086/590545. [Google Scholar]
- Gopalswamy N. 2017. Extreme solar eruptions and their space weather consequences. In: Extreme events in geospace, Elsevier, pp. 37–63. [Google Scholar]
- Greisen EW, Calabretta MR. 2002. Representations of world coordinates in FITS. A&A 395: 1061–1075. https://doi.org/10.1051/0004-6361:20021326. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Hao Q, Fang C, Cao W, Chen PF. 2015. Statistical analysis of filament features based on the Hα solar images from 1988 to 2013 by computer automated detection method. Astrophys J Suppl Ser 221(2): 33. https://doi.org/10.1088/0067-0049/221/2/33. [CrossRef] [Google Scholar]
- Harvey KL, White OR. 1999. Magnetic and radiative variability of solar surface structures. I. Image decomposition and magnetic-intensity mapping. Astrophys J 515(2): 812–831. https://doi.org/10.1086/307035. [NASA ADS] [CrossRef] [Google Scholar]
- Hasan SS, Mallik DCV, Bagare SP, Rajaguru SP. 2010. Solar physics at the Kodaikanal observatory: A historical perspective. Astrophys Space Sci Proc 19: 12–36. https://doi.org/10.1007/978-3-642-02859-5_3. [NASA ADS] [CrossRef] [Google Scholar]
- Hathaway DH. 2015. The solar cycle. Liv Rev Sol Phys 12(1): 4. https://doi.org/10.1007/lrsp-2015-4. [Google Scholar]
- Huang Z, Madjarska MS, Koleva K, Doyle JG, Duchlev P, Dechev M, Reardon K. 2014. Hα spectroscopy and multiwavelength imaging of a solar flare caused by filament eruption. A&A 566: A148. https://doi.org/10.1051/0004-6361/201323097. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Jiang Y, Yang J, Wang H, Ji H, Liu Y, Li H, Li J. 2014. Interaction and merging of two sinistral filaments. Astrophys J 793(1): 14. https://doi.org/10.1088/0004-637X/793/1/14. [CrossRef] [Google Scholar]
- Jiang J, Cameron RH, Schüssler M. 2015. The cause of the weak solar cycle 24. Astrophys J Lett 808(1): L28. https://doi.org/10.1088/2041-8205/808/1/L28. [Google Scholar]
- Joshi NC, Srivastava AK, Filippov B, Kayshap P, Uddin W, Chandra R, Prasad Choudhary D, Dwivedi BN. 2014. Confined partial filament eruption and its reformation within a stable magnetic flux rope. Astrophys J 787(1): 11. https://doi.org/10.1088/0004-637X/787/1/11. [NASA ADS] [CrossRef] [Google Scholar]
- Kliem B, Török T. 2006. Torus instability. Phys Rev Lett 96(25): 255002. https://doi.org/10.1103/PhysRevLett.96.255002. [Google Scholar]
- Liu R, Liu C, Xu Y, Liu W, Kliem B, Wang H. 2013. Observation of a moreton wave and wave-filament interactions associated with the Renowned X9 Flare on 1990 May 24. Astrophys J 773(2): 166. https://doi.org/10.1088/0004-637X/773/2/166. [NASA ADS] [CrossRef] [Google Scholar]
- Malherbe JM, Dalmasse K. 2019. The new 2018 version of the Meudon Spectroheliograph. Sol Phys. 294(5): 52. https://doi.org/10.1007/s11207-019-1441-7. [Google Scholar]
- Malherbe JM, Corbard T, Dalmasse K, Team Meteospace. 2019. Meteospace, a new instrument for solar survey at the Calern observatory. Sol Phys 294(12): 177. https://doi.org/10.1007/s11207-019-1569-5. [CrossRef] [Google Scholar]
- McCauley PI, Su YN, Schanche N, Evans KE, Su C, McKillop S, Reeves KK. 2015. Prominence and filament eruptions observed by the Solar Dynamics observatory: Statistical properties, kinematics, and online catalog. Sol Phys 290(6): 1703–1740. https://doi.org/10.1007/s11207-015-0699-7. [Google Scholar]
- McIntosh SW, Leamon RJ, Gurman JB, Olive J-P, Cirtain JW, Hathaway DH, Burkepile J, Miesch M, Markel RS, Sitongia L. 2013. Hemispheric asymmetries of solar photospheric magnetism: Radiative, particulate, and heliospheric impacts. Astrophys J 765(2): 146. https://doi.org/10.1088/0004-637X/765/2/146. [Google Scholar]
- Moreton GE. 1960. Hα observations of flare-initiated disturbances with velocities 1000 km/sec. AJ 65: 494. https://doi.org/10.1086/108346. [Google Scholar]
- Mouradian Z, Soru-Escaut I. 1993. On solar activity and the solar cycle. A new analysis of the butterfly diagram of sunpsots. A&A 280(2): 661–665. [Google Scholar]
- Muhr N, Vršnak B, Temmer M, Veronig AM, Magdalenić J. 2010. Analysis of a global Moreton wave observed on 2003 October 28. Astrophys J 708(2): 1639–1649. https://doi.org/10.1088/0004-637X/708/2/1639. [NASA ADS] [CrossRef] [Google Scholar]
- Nagy M, Lemerle A, Labonville F, Petrovay K, Charbonneau P. 2017. The effect of “Rogue” active regions on the solar cycle. Sol Phys 292(11): 167. https://doi.org/10.1007/s11207-017-1194-0. [NASA ADS] [CrossRef] [Google Scholar]
- Narukage N, Ishii TT, Nagata S, UeNo S, Kitai R, Kurokawa H, Akioka M, Shibata K. 2008. Three successive and interacting shock waves generated by a solar flare. Astrophys J Lett 684(1): L45. https://doi.org/10.1086/592108. [NASA ADS] [CrossRef] [Google Scholar]
- Pevtsov AA, Virtanen I, Mursula K, Tlatov A, Bertello L. 2016. Reconstructing solar magnetic fields from historical observations. I. Renormalized Ca K spectroheliograms and pseudo-magnetograms. A&A 585: A40. https://doi.org/10.1051/0004-6361/201526620. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Pomoell J, Poedts S. 2018. EUHFORIA: European heliospheric forecasting information asset. J Space Weather Space Clim 8: A35. https://doi.org/10.1051/swsc/2018020. [CrossRef] [Google Scholar]
- Ribes JC, Nesme-Ribes E. 1993. The solar sunspot cycle in the Maunder minimum AD1645 to AD1715. A&A 276: 549. [Google Scholar]
- Schmieder B. 2018. Extreme solar storms based on solar magnetic field. J Atmos Sol-Terr Phys 180: 46–51. https://doi.org/10.1016/j.jastp.2017.07.018. [Google Scholar]
- Schmieder B, Forbes TG, Malherbe JM, Machado ME. 1987. Evidence for gentle chromospheric evaporation during the gradual phase of large solar flares. Astrophys J 317: 956. https://doi.org/10.1086/165344. [NASA ADS] [CrossRef] [Google Scholar]
- Schrijver CJ, Beer J, Baltensperger U, Cliver EW, Güdel M, et al. 2012. Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records. J Geophys Res (Space Phys) 117(A8): A08103. https://doi.org/10.1029/2012JA017706. [Google Scholar]
- Shibata K, Magara T. 2011. Solar flares: Magnetohydrodynamic processes. Liv Rev Sol Phys 8(1): 6. https://doi.org/10.12942/lrsp-2011-6. [Google Scholar]
- Spoerer FWG, Maunder EW. 1890. Prof. Spoerer’s researches on Sun-spots. Mon Not R Astron Soc 50: 251. https://doi.org/10.1093/mnras/50.4.251. [Google Scholar]
- Svalgaard L, Kamide Y. 2013. Asymmetric solar polar field reversals. Astrophys J 763(1): 23. https://doi.org/10.1088/0004-637X/763/1/23. [Google Scholar]
- Toriumi S, Schrijver CJ, Harra LK, Hudson H, Nagashima K. 2017. Magnetic properties of solar active regions that govern large solar flares and eruptions. Astrophys J 834(1): 56. https://doi.org/10.3847/1538-4357/834/1/56. [Google Scholar]
- Tsiftsi T, De la Luz V. 2018. Extreme value analysis of solar flare events. Space Weather 16(12): 1984–1996. https://doi.org/10.1029/2018SW001958. [CrossRef] [Google Scholar]
- Ueno S, Shibata K, Ichimoto K, Kitai R, Nagata S, Kimura G, Nakatani Y. 2010. Continuous H-alpha Imaging Network Project (CHAIN) with ground-based solar telescopes for Space Weather Research. African Skies 14: 17. [Google Scholar]
- Veronig AM, Polanec W. 2015. Magnetic reconnection rates and energy release in a confined X-class flare. Sol Phys 290(10): 2923–2942. https://doi.org/10.1007/s11207-015-0789-6. [CrossRef] [Google Scholar]
- Wang H, Qiu J, Jing J, Zhang H. 2003. Study of ribbon separation of a flare associated with a Quiescent filament eruption. Astrophys J 593(1): 564–570. https://doi.org/10.1086/376360. [NASA ADS] [CrossRef] [Google Scholar]
- Warmuth A. 2015. Large-scale globally propagating coronal waves. Liv Rev Sol Phys 12(1): 3. https://doi.org/10.1007/lrsp-2015-3. [Google Scholar]
- Webb DF, Gibson SE, Hewins IM, McFadden RH, Emery BA, Malanushenko A, Kuchar TA. 2018. Global solar magnetic field evolution over 4 solar cycles: Use of the McIntosh archive. Front Astron Space Sci 5: 23. https://doi.org/10.3389/fspas.2018.00023. [CrossRef] [Google Scholar]
- Zhang Y, Kitai R, Narukage N, Matsumoto T, Ueno S, Shibata K, Wang J. 2011. Propagation of Moreton waves. Publ Astron Soc Jpn 63: 685. https://doi.org/10.1093/pasj/63.3.685. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.