Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
Topical Issue - Space Weather research in the Digital Age and across the full data lifecycle
|
|
---|---|---|
Article Number | 5 | |
Number of page(s) | 19 | |
DOI | https://doi.org/10.1051/swsc/2020008 | |
Published online | 18 February 2020 |
- Baker KB, Wing S. 1989. A new magnetic coordinate system for conjugate studies at high latitudes. J Geophys Res 94: 9139–9143. https://doi.org/10.1029/JA094iA07p09139. [CrossRef] [Google Scholar]
- Baker G, Donovan EF, Jackel BJ. 2003. A comprehensive survey of auroral latitude Pc5 pulsation characteristics. J Geophys Res 108: 1384. https://doi.org/10.1029/2002JA009801. [CrossRef] [Google Scholar]
- Beamish D, Clark TDG, Clarke E, Thomson AWP. 2002. Geomagnetically induced currents in the UK: Geomagnetic variations and surface electric fields. J Atmos Solar-Terr Phys 64: 1779–1792. https://doi.org/10.1016/S1364-6826(02)00127-X. [Google Scholar]
- Beggan CD, Beamish D, Richards A, Kelly GS, Thomson AWP. 2013. Prediction of extreme geomagnetically induced currents in the UK high-voltage network. Space Weather 11: 407–419. https://doi.org/10.1002/swe.20065. [CrossRef] [Google Scholar]
- Belakhovsky VB, Pilipenko VA, Sakharov YaA, Lorentzen DL, Samsonov SN. 2017. Geomagnetic and ionospheric response to the interplanetary shock on January 24, 2012. Earth Planets Space 69: 105. https://doi.org/10.1186/s40623-017-0696-1. [CrossRef] [Google Scholar]
- Belakhovsky V, Pilipenko V, Engebretson M, Sakharov Y, Selivanov V. 2019. Impulsive disturbances of the geomagnetic field as a cause of induced currents of electric power lines. J Space Weather Space Clim 9: A1. https://doi.org/10.1051/swsc/2019015. [CrossRef] [Google Scholar]
- Boteler DH. 2000. Geomagnetic effects on the pipe-to-soil potentials of a continental pipeline. Adv Space Res 26: 15–20. https://doi.org/10.1016/S0273-1177(99)01020-0. [CrossRef] [Google Scholar]
- Boteler DH, Pirjola RJ. 2014. Comparison of methods for modelling geomagnetically induced currents. Ann Geophys 32: 1177–1187. https://doi.org/10.5194/angeo-32-1177-2014. [CrossRef] [Google Scholar]
- Boteler DH, Pirjola RJ. 2017. Modeling geomagnetically induced currents. Space Weather 15: 258–276. https://doi.org/10.1002/2016SW001499. [CrossRef] [Google Scholar]
- Boteler DH, Pirjola RJ, Nevanlinna H. 1998. The effects of geomagnetic disturbances on electrical systems at the Earth’s surface. Adv Space Res 22: 17–27. https://doi.org/10.1016/S0273-1177(97)01096-X. [CrossRef] [Google Scholar]
- Cagniard L. 1953. Basic theory of the magneto-telluric method of geophysical prospecting. Geophysics 18: 605–635. https://doi.org/10.1190/1.1437915. [CrossRef] [Google Scholar]
- Campbell WH. 2003. Introduction to geomagnetic fields, 2nd edn., Cambridge University Press, Cambridge, UK. [CrossRef] [Google Scholar]
- Carter BA, Yizengaw E, Pradipta R, Halford AJ, Norman R, Zhang K. 2015. Interplanetary shocks and the resulting geomagnetically induced currents at the equator. Geophys Res Lett 42: 6554–6559. https://doi.org/10.1002/2015GL065060. [CrossRef] [Google Scholar]
- Chapman S, Ferraro VCA. 1931. A new theory of magnetic storms. Terr Magn 36: 77–97. https://doi.org/10.1029/TE036i002p00077. [CrossRef] [Google Scholar]
- Coles S. 2001. An introduction to statistical modeling of extreme values, Springer-Verlag, London Ltd., London. https://doi.org/10.1007/978-1-4471-3675-0. [Google Scholar]
- Crooker NU. 1992. Reverse convection. J Geophys Res 97: 19363–19372. https://doi.org/10.1029/92JA01532. [CrossRef] [Google Scholar]
- Elvidge S, Angling M. 2018. Using extreme value theory for determining the probability of Carrington-like solar flares. Space Weather 16: 417–421. https://doi.org/10.1002/2017SW001727. [CrossRef] [Google Scholar]
- Engebretson M, Glassmeier K-H, Stellmacher M, Hughes WJ, Lühr H. 1998. The dependence of high-latitude Pc5 wave power on solar wind velocity and on the phase of high-speed solar wind streams. J Geophys Res 103: 26271–26283. https://doi.org/10.1029/97JA03143. [Google Scholar]
- Engebretson MJ, Yeoman TK, Oksavik K, Søraas F, Sigernes F, et al. 2013. Multi-instrument observations from Svalbard of a traveling convection vortex, electromagnetic ion cyclotron wave burst, and proton precipitation associated with a bow shock instability. J Geophys Res 118: 2975–2997. https://doi.org/10.1002/jgra.50291. [CrossRef] [Google Scholar]
- Erinmez IA, Kappenman JG, Radasky WA. 2002. Management of the geomagnetically induced current risks on the National Grid company’s electric power transmission system. J Atmos Solar-Terr Phys 64: 743–756. https://doi.org/10.1016/S1364-6826(02)00036-6. [CrossRef] [Google Scholar]
- Eroshenko EA, Belov AV, Boteler DH, Gaidash SP, Lobkov SL, Pirjola R, Trichtchenko L. 2010. Effects of strong geomagnetic storms on northern railways in Russia. Adv Space Res 46: 1102–1110. https://doi.org/10.1016/j.asr.2010.05.017. [CrossRef] [Google Scholar]
- Falayi EO, Ogunmodimu O, Bolaji OS, Ayanda JD, Ojoniyi OS. 2017. Investigation of geomagnetic induced current at high latitude during the storm-time variation. NRIAG J Astron Geophys 6: 131–140. https://doi.org/10.1016/j.nrjag.2017.04.010. [CrossRef] [Google Scholar]
- Fiori RAD, Boteler DH, Gillies DM. 2014. Assessment of GIC risk due to geomagnetic sudden commencements and identification of the current systems responsible. Space Weather 12: 76–91. https://doi.org/10.1002/2013SW000967. [CrossRef] [Google Scholar]
- Friis-Christensen E, McHenry MA, Clauer CR, Vennerstrøm S. 1988. Ionospheric traveling convection vortices observed near the polar cleft: A triggered response to sudden changes in the solar wind. Geophys Res Lett 15: 253–256. https://doi.org/10.1029/GL015i003p00253. [CrossRef] [Google Scholar]
- Gaunt CT, Coetzee G. 2007. Transformer failures in regions incorrectly considered to have low GIC-risk. In: IEEE PowerTech, 1–5 July 2007, Lausanne, pp. 807–812. https://doi.org/10.1109/PCT.2007.4538419. [Google Scholar]
- Gjerloev JW. 2009. A global ground-based magnetometer initiative. EOS 90: 230–231. https://doi.org/10.1029/2009EO270002. [Google Scholar]
- Gjerloev JW. 2012. The SuperMAG data processing technique. J Geophys Res 117: A09213. https://doi.org/10.1029/2012JA017683. [CrossRef] [Google Scholar]
- Gjerloev JW, Hoffman RA. 2014. The large-scale current system during auroral substorms. J Geophys Res Space Phys 119: 4591–4606. https://doi.org/10.1002/2013JA019176. [CrossRef] [Google Scholar]
- Gjerloev JW, Hoffman RA, Sigwarth JB, Frank LA. 2007. Statistical description of the bulge-type auroral substorm in the far ultraviolet. J Geophys Res 112: A07213. https://doi.org/10.1029/2006JA012189. [CrossRef] [Google Scholar]
- Hao YX, Zong Q-G, Zhou X-Z, Rankin R, Chen XR, et al. 2019. Global-scale ULF waves associated with SSC accelerate magnetospheric ultrarelativistic electrons. J Geophys Res Space Phys 124: 1525–1538. https://doi.org/10.1029/2018JA026134. [CrossRef] [Google Scholar]
- Hunsucker RD, Hargreaves JK. 2003. The high-latitude ionosphere and its effects on radio propagation, Cambridge University Press, Cambridge. [Google Scholar]
- Kappenman JG. 2003. Storm sudden commencement events and the associated geomagnetically induced current risks to ground-based systems at low-latitude and midlatitude locations. Space Weather 1: 1016. https://doi.org/10.1029/2003SW000009. [Google Scholar]
- Kappenman JG. 2004. The evolving vulnerability of electric power grids. Space Weather 2: S01004. https://doi.org/10.1029/2003SW000028. [CrossRef] [Google Scholar]
- Kappenman JG. 2006. Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events – An analysis of observational evidence including the great storm of May 1921. Adv Space Res 38: 188–199. https://doi.org/10.1016/j.asr.2005.08.055. [CrossRef] [Google Scholar]
- Kivelson MG, Russell CT. 2005. Introduction to space physics. Cambridge University Press, Cambridge. [Google Scholar]
- Knipp DJ. 2011. Understanding space weather and the physics behind it, McGraw-Hill Companies Inc, New York, NY. [Google Scholar]
- Koons HC. 2001. Statistical analysis of extreme values in space science. J Geophys Res 106: 10915–10921. https://doi.org/10.1029/2000JA000234. [CrossRef] [Google Scholar]
- Kozyreva OV, Pilipenko VA, Belakhovsky VB, Sakharov YA. 2018. Ground geomagnetic field and GIC response to March 17, 2015, storm. Earth Planets Space 70: 157. https://doi.org/10.1186/s40623-018-0933-2. [CrossRef] [Google Scholar]
- Lanzerotti LJ, Konik RM, Wolfe A, Venkatesan D, Maclennan CG. 1991. Cusp latitude magnetic impulse events: 1. Occurrence statistics. J Geophys Res 96: 14009–14022. https://doi.org/10.1029/91JA00567. [CrossRef] [Google Scholar]
- Lanzerotti LJ, Medford LV, Maclennan CG, Thomson DJ. 1995. Studies of large-scale Earth potentials across oceanic distances. AT&T Tech J 74: 73–84. https://doi.org/10.1002/j.1538-7305.1995.tb00185.x. [CrossRef] [Google Scholar]
- Laundal KM, Richmond AD. 2017. Magnetic coordinate systems. Space Sci Rev 206: 27. https://doi.org/10.1007/s11214-016-0275-y. [CrossRef] [Google Scholar]
- Liou K, Newell PT, Sibeck DG, Meng C-I. 2001. Observation of IMF and seasonal effects in the location of auroral substorm onset. J Geophys Res 106: 5799–5810. https://doi.org/10.1029/2000JA003001. [CrossRef] [Google Scholar]
- Liu L, Ge X, Zong W, Zhou Y, Liu M. 2016. Analysis of the monitoring data of geomagnetic storm interference in the electrification system of a high-speed railway. Space Weather 14: 754–763. https://doi.org/10.1002/2016SW001411. [CrossRef] [Google Scholar]
- Love JL, Coïsson P, Pulkkinen A. 2016. Global statistical maps of extreme-event magnetic observatory 1 min first differences in horizontal intensity. Geophys Res Lett 43: 4126–4135. https://doi.org/10.1002/2016GL068664. [CrossRef] [Google Scholar]
- Manpreet K. 2018. Geomagnetic disturbance characterization in the Hydro-Quebec power system using AUTUMNX data, M.Eng. Thesis, University of Victoria, Canada. Available online: https://dspace.library.uvic.ca/bitstream/handle/1828/9018/Kaur_Manpreet_MEng_2018.pdf [Google Scholar]
- Marshall RA, Dalzell M, Waters CL, Goldthorpe P, Smith EA. 2012. Geomagnetically induced currents in the New Zealand power network. Space Weather 10: S08003. https://doi.org/10.1029/2012SW000806. [CrossRef] [Google Scholar]
- Masson A, Nykyri K. 2018. Kelvin–Helmholtz instability: Lessons learned and ways forward. Space Sci Rev 214: 71. https://doi.org/10.1007/s11214-018-0505-6. [CrossRef] [Google Scholar]
- Matsushita S. 1968. Sq and L current systems in the ionosphere. Geophys J Int 15: 109–125. https://doi.org/10.1111/j.1365-246X.1968.tb05751.x. [CrossRef] [Google Scholar]
- Menietti JD, Burch JL. 1988. Spatial extent of the plasma injection region in the cusp-magnetosheath interface. J Geophys Res 93: 105–113. https://doi.org/10.1029/JA093iA01p00105. [CrossRef] [Google Scholar]
- Meredith NP, Horne RB, Isles JD, Rodriguez JV. 2015. Extreme relativistic electron fluxes at geosynchronous orbit: Analysis of GOES E >2 MeV electrons. Space Weather 13: 170–184. https://doi.org/10.1002/2014SW001143. [CrossRef] [Google Scholar]
- Milan SE, Clausen LBN, Coxon JC, Carter JA, Walach M-T, et al. 2017. Overview of solar wind–magnetosphere–ionosphere–atmosphere coupling and the generation of magnetospheric currents. Space Sci Rev 206: 547. https://doi.org/10.1007/s11214-017-0333-0. [CrossRef] [Google Scholar]
- Molinski TS. 2002. Why utilities respect geomagnetically induced currents. J Atmos Solar-Terr Phys 64: 1765–1778. https://doi.org/10.1016/S1364-6826(02)00126-8. [Google Scholar]
- Nakamura M, Yoneda A, Oda M, Tsubouchi K. 2015. Statistical analysis of extreme auroral electrojet indices. Earth Planets Space 67: 153. https://doi.org/10.1186/s40623-015-0321-0. [CrossRef] [Google Scholar]
- Newell PT, Meng C-I, Sibeck DG, Lepping R. 1989. Some low-altitude cusp dependencies on the interplanetary magnetic field. J Geophys Res 94: 8921–8927. https://doi.org/10.1029/JA094iA07p08921. [CrossRef] [Google Scholar]
- Ngwira CM, Pulkkinen A, Wilder FD, Crowley G. 2013. Extended study of extreme geoelectric field event scenarios for geomagnetically induced current applications. Space Weather 11: 121–131. https://doi.org/10.1002/swe.20021. [CrossRef] [Google Scholar]
- Ngwira CM, Sibeck D, Silveira MDV, Georgiou M, Weygand JM, Nishimura Y, Hampton D. 2018. A study of intense local dB/dt variations during two geomagnetic storms. Space Weather 16: 676–693. https://doi.org/10.1029/2018SW001911. [CrossRef] [Google Scholar]
- Nikitina L, Trichtchenko L, Boteler DH. 2016. Assessment of extreme values in geomagnetic and geoelectric field variations for Canada. Space Weather 14: 481–494. https://doi.org/10.1002/2016SW001386. [CrossRef] [Google Scholar]
- Nykyri K, Dimmock AP. 2016. Statistical study of the ULF Pc4–Pc5 range fluctuations in the vicinity of Earth’s magnetopause and correlation with the low latitude boundary layer thickness. Adv Space Sci 58: 257–267. https://doi.org/10.1016/j.asr.2015.12.046. [CrossRef] [Google Scholar]
- O’Brien TP, Fennell JF, Roeder JL, Reeves GD. 2007. Extreme electron fluxes in the outer zone. Space Weather 5: S01001. https://doi.org/10.1029/2006SW000240. [Google Scholar]
- Pahud DM, Rae IJ, Mann IR, Murphy KR, Amalraj V. 2009. Ground-based Pc5 ULF wave power: Solar wind speed and MLT dependence. J Atmos Solar-Terr Phys 71: 1082–1092. https://doi.org/10.1016/j.jastp.2008.12.004. [Google Scholar]
- Pawitan Y. 2001. In all likelihood: Statistical modelling and inference using likelihood. Clarendon Press, Oxford; New York. [Google Scholar]
- Pirjola R. 2002. Review on the calculation of surface electric and magnetic fields and of geomagnetically induced currents in ground-based technological systems. Surv Geophys 23: 71–90. https://doi.org/10.1023/A:101481600930. [CrossRef] [Google Scholar]
- Pirjola R, Viljanen A, Pulkkinen A, Amm O. 2000. Space weather risk in power systems and pipelines. Phys Chem Earth Part C Solar-Terr Planet Sci 25: 333–337. https://doi.org/10.1016/S1464-1917(00)00027-1. [Google Scholar]
- Pitout F, Bosqued J-M, Alcaydé D, Denig WF, Rème H. 2001. Observations of the cusp region under northward IMF. Ann Geophys 19: 1641–1653. https://doi.org/10.5194/angeo-19-1641-2001. [CrossRef] [Google Scholar]
- Pothier NM, Weimer DR, Moore WB. 2015. Quantitative maps of geomagnetic perturbation vectors during substorm onset and recovery. J Geophys Res: Space Phys 120: 1197–1214. https://doi.org/10.1002/2014JA020602. [CrossRef] [Google Scholar]
- Pulkkinen A, Viljanen A, Pajunpää K, Pirjola R. 2001. Recordings and occurrence of geomagnetically induced currents in the Finnish natural gas pipeline network. J App Geophys 48: 219–231. https://doi.org/10.1016/S0926-9851(01)00108-2. [CrossRef] [Google Scholar]
- Pulkkinen A, Thomson A, Clarke E, McKay A. 2003. April 2000 geomagnetic storm: ionospheric drivers of large geomagnetically induced currents. Ann Geophys 21: 709–717. https://doi.org/10.5194/angeo-21-709-2003. [CrossRef] [Google Scholar]
- Pulkkinen A, Bernabeu E, Eichner J, Beggan C, Thomson AWP. 2012. Generation of 100-year geomagnetically induced current scenarios. Space Weather 10: S04003. https://doi.org/10.1029/2011SW000750. [CrossRef] [Google Scholar]
- Qian X, Tian H, Yin Y, Li Y, Liu M, Jiang Z. 2016. Geomagnetic storms’ influence on intercity railway track circuit. Urban Rail Transit 2: 85–91. https://doi.org/10.1007/s40864-016-0040-2. [CrossRef] [Google Scholar]
- Reiss R-D, Thomas M. 2007. Statistical analysis of extreme values, 3rd edn., Birkhäuser Verlag, Basel-Boston-Berlin. https://doi.org/10.1007/978-3-7643-7399-3. [Google Scholar]
- Root HG. 1979. Earth-current effects on communication-cable power subsystems. IEEE Trans Electromagn Compat EMC-21: 87–92. https://doi.org/10.1109/TEMC.1979.303750. [CrossRef] [Google Scholar]
- Russell CT, Elphic RC. 1978. Initial ISEE magnetometer results: Magnetopause observations. Space Sci Rev 22: 681. https://doi.org/10.1007/BF00212619. [CrossRef] [Google Scholar]
- Russell CT, McPherron RL. 1973. Semiannual variation of geomagnetic activity. J Geophys Res 78: 92–108. https://doi.org/10.1029/JA078i001p00092. [NASA ADS] [CrossRef] [Google Scholar]
- Russell CT, Ginskey M, Petrinec SM. 1994. Sudden impulses at low-latitude stations: Steady state response for northward interplanetary magnetic field. J Geophys Res 99: 253–261. https://doi.org/10.1029/93JA02288. [CrossRef] [Google Scholar]
- Shepherd SG. 2014. Altitude-adjusted corrected geomagnetic coordinates: Definition and functional approximations. J Geophys Res 119: 7501–7521. https://doi.org/10.1002/2014JA020264. [CrossRef] [Google Scholar]
- Shinbori A, Tsuji Y, Kikuchi T, Araki T, Watari S. 2009. Magnetic latitude and local time dependence of the amplitude of geomagnetic sudden commencements. J Geophys Res 114: A04217. https://doi.org/10.1029/2008JA013871. [CrossRef] [Google Scholar]
- Sibeck DG. 1993. Transient magnetic field signatures at high latitudes. J Geophys Res 98: 243–256. https://doi.org/10.1029/92JA01661. [CrossRef] [Google Scholar]
- Sibeck DG, Korotova GI. 1996. Occurrence patterns for transient magnetic field signatures at high latitudes. J Geophys Res 101: 13413–13428. https://doi.org/10.1029/96JA00187. [CrossRef] [Google Scholar]
- Silbergleit V. 1996. On the occurrence of geomagnetic storms with sudden commencements. J Geomag Geoelectr 48: 1011–1016. https://doi.org/10.5636/jgg.48.1011. [CrossRef] [Google Scholar]
- Silbergleit V. 1999. Forecast of the most geomagnetically disturbed days. Earth Planets Space 51: 19–22. https://doi.org/10.1186/BF03352205. [CrossRef] [Google Scholar]
- Siscoe GL. 1976. On the statistics of the largest geomagnetic storms per solar cycle. J Geophys Res 81: 4782–4784. https://doi.org/10.1029/JA081i025p04782. [NASA ADS] [CrossRef] [Google Scholar]
- Thébault E, Finlay CC, Beggan CD, Alken P, Aubert J, et al. 2015. International geomagnetic reference field: The 12th generation. Earth Planets Space 67: 79. https://doi.org/10.1186/s40623-015-0228-9. [CrossRef] [Google Scholar]
- Thomson AWP, Gaunt CT, Cilliers P, Wild JA, Opperman B, McKinnell L-A, Kotze P, Ngwira CM, Lotz SI. 2010. Present day challenges in understanding the geomagnetic hazard to national power grids. Adv Space Res 45: 1182–1190. https://doi.org/10.1016/j.asr.2009.11.023. [CrossRef] [Google Scholar]
- Thomson AWP, Dawson EB, Reay SJ. 2011. Quantifying extreme behavior in geomagnetic activity. Space Weather 9: S10001. https://doi.org/10.1029/2011SW000696. [Google Scholar]
- Trivedi NB, Vitorello Í, Kabata W, Dutra SLG, Padilha AL, et al. 2007. Geomagnetically induced currents in an electric power transmission system at low latitudes in Brazil: A case study. Space Weather 5: S04004. https://doi.org/10.1029/2006SW000282. [CrossRef] [Google Scholar]
- Tsiftsi T, De la Luz V. 2018. Extreme value analysis of solar flare events. Space Weather 16: 1984–1986. https://doi.org/10.1029/2018SW001958. [CrossRef] [Google Scholar]
- Tsubouchi K, Omura Y. 2007. Long-term occurrence probabilities of intense geomagnetic storm events. Space Weather 5: S12003. https://doi.org/10.1029/2007SW000329. [NASA ADS] [CrossRef] [Google Scholar]
- Vasseur G, Weidelt P. 1977. Bimodal electromagnetic induction in non-uniform thin sheets with an application to the northern Pyrenean induction anomaly. Geophys J Int 51: 669–690. https://doi.org/10.1111/j.1365-246X.1977.tb04213.x. [CrossRef] [Google Scholar]
- Vennerstrøm S. 1999. Dayside magnetic ULF power at high latitudes: A possible long-term proxy for the solar wind velocity? J Geophys Res 104: 10145–10157. https://doi.org/10.1029/1999JA900015. [CrossRef] [Google Scholar]
- Viljanen A, Nevanlinna H, Pajunpää K, Pulkkinen A. 2001. Time derivative of the horizontal geomagnetic field as an activity indicator. Ann Geophys 19: 1107–1118. https://doi.org/10.5194/angeo-19-1107-2001. [CrossRef] [Google Scholar]
- Vorobjev VG, Yagodkina OI, Zverev VL. 1999. Morphological features of bipolar magnetic impulsive events and associated interplanetary medium signatures. J Geophys Res 104: 4595–4607. https://doi.org/10.1029/1998JA900042. [CrossRef] [Google Scholar]
- Wang H, Lühr H, Ma SY, Ritter P. 2005. Statistical study of the substorm onset: Its dependence on solar wind parameters and solar illumination. Ann Geophys 23: 2069–2079. https://doi.org/10.5194/angeo-23-2069-2005. [CrossRef] [Google Scholar]
- Wang H, Ridley AJ, Lühr H. 2008. SWMF simulation of field-aligned currents for a varying northward and duskward IMF with nonzero dipole tilt. Ann Geophys 26: 1461–1477. https://doi.org/10.5194/angeo-26-1461-2008. [CrossRef] [Google Scholar]
- Watanabe M, Kabin K, Sofko GJ, Rankin R, Gombosi TI, Ridley AJ, Clauer CR. 2005. Internal reconnection for northward interplanetary magnetic field. J Geophys Res 110: A06210. https://doi.org/10.1029/2004JA010832. [Google Scholar]
- Weigel RS, Baker DN. 2003. Probability distribution invariance of 1-minute auroral-zone geomagnetic field fluctuations. Geophys Res Lett 30: 2193. https://doi.org/10.1029/2003GL018470. [CrossRef] [Google Scholar]
- Weimer DR, Ober DM, Maynard NC, Collier MR, McComas DJ, Ness NF, Smith SW, Watermann J. 2003. Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique. J Geophys Res 108: 1026. https://doi.org/10.1029/2002JA009405. [CrossRef] [Google Scholar]
- Wik M, Pirjola R, Lundstedt H, Viljanen A, Wintoft P, Pulkkinen A. 2009. Space weather events in July 1982 and October 2003 and the effects of geomagnetically induced currents on Swedish technical systems. Ann Geophys 27: 1775–1787. https://doi.org/10.5194/angeo-27-1775-2009. [CrossRef] [Google Scholar]
- Wintoft P, Wik M, Viljanen A. 2015. Solar wind driven empirical forecast models of the time derivative of the ground magnetic field. J Space Weather Space Clim 5: A7. https://doi.org/10.1051/swsc/2015008. [CrossRef] [EDP Sciences] [Google Scholar]
- Wintoft P, Viljanen A, Wik M. 2016. Extreme value analysis of the time derivative of the horizontal magnetic field and computed electric field. Ann Geophys 34: 485–491. https://doi.org/10.5194/angeo-34-485-2016. [CrossRef] [Google Scholar]
- Yamazaki Y, Maute A. 2017. Sq and EEJ – A review on the daily variation of the geomagnetic field caused by ionospheric dynamo currents. Space Sci Rev 206: 299–405. https://doi.org/10.1007/s11214-016-0282-z. [CrossRef] [Google Scholar]
- Zhang XY, Zong Q-G, Wang YF, Zhang H, Xie L, Fu SY, Yuan CJ, Yue C, Yang B, Pu ZY. 2010. ULF waves excited by negative/positive solar wind dynamic pressure impulses at geosynchronous orbit. J Geophys Res 115: A10221. https://doi.org/10.1029/2009JA015016. [Google Scholar]
- Zhang JJ, Wang C, Sun TR, Liu CM, Wang KR. 2015. GIC due to storm sudden commencement in low-latitude high-voltage power network in China: Observation and simulation. Space Weather 13: 643–655. https://doi.org/10.1002/2015SW001263. [CrossRef] [Google Scholar]
- Zhao H, Zong Q-G. 2012. Seasonal and diurnal variation of geomagnetic activity: Russell-McPherron effect during different IMF polarity and/or extreme solar wind conditions. J Geophys Res 117: A11222. https://doi.org/10.1029/2012JA017845. [Google Scholar]
- Zong Q-G, Zhou X-Z, Wang YF, Li X, Song P, Baker DN, Fritz TA, Daly PW, Dunlop M, Pedersen A. 2009. Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt. J Geophys Res 114: A10204. https://doi.org/10.1029/2009JA014393. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.