Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
|
|
---|---|---|
Article Number | 6 | |
Number of page(s) | 51 | |
Section | Agora | |
DOI | https://doi.org/10.1051/swsc/2020003 | |
Published online | 28 February 2020 |
- Aboudarham J, Bentley RD, Csillaghy A. 2012. HELIO: a heliospheric virtual observatory. ASP Conf Ser 461 : 255. [Google Scholar]
- Adriani O, Barbarino GC, Bazilevskaya GA, Bellotti R, Boezio M, et al. 2015. Pamela’s measurements of magnetospheric effects on high energy solar particles. Astrophys J Lett 801 : 1. https://doi.org/10.1088/2041-8205/801/1/L3. [Google Scholar]
- Adriani O, Barbarino GC, Bazilevskaya GA, Bellotti R, Boezio M, et al. 2016. Time dependence of the electron and positron components of the cosmic radiation measured by the PAMELA experiment between July 2006 and December 2015. Phys Rev Lett 116 : 241105. https://doi.org/10.1103/PhysRevLett.116.241105. [CrossRef] [PubMed] [Google Scholar]
- Adriani A, Filacchione G, Di Iorio T, Turrini D, Noschese R, et al. 2017. JIRAM, the Jovian Infrared Auroral Mapper. Space Sci Rev 213 : 393. https://doi.org/10.1007/s11214-014-0094-y. [CrossRef] [Google Scholar]
- Aguilar M, Ali Cavasonza L, Alpat B, Ambrosi G, Arruda L, et al. 2018. Observation of fine time structures in the cosmic proton and helium fluxes with the alpha magnetic spectrometer on the international space station. Phys Rev Lett 120 : 051101. https://doi.org/10.1103/PhysRevLett.121.051101. [CrossRef] [Google Scholar]
- Aguilar M, Ali Cavasonza L, Ambrosi G, Arruda L, Attig N, et al. 2018. Observation of complex time structures in the cosmic-ray electron and positron fluxes with the alpha magnetic spectrometer on the international space station. Phys Rev Lett 120 : 051102. https://doi.org/10.1103/PhysRevLett.121.051102. [CrossRef] [PubMed] [Google Scholar]
- Albanese C, Rodriguez F, Ronchini R, di Rollo S, Berrilli F, et al. 2018. The ionosphere prediction service, space weather of the heliosphere: processes and forecasts. Proc Int Astron Union 335 : 352–354. https://doi.org/10.1017/S174392131800025X. [Google Scholar]
- Alfonsi L, Spogli L, Pezzopane M, Romano V, Zuccheretti E, et al. 2013. Comparative analysis of spread-F signature and GPS scintillation occurrences at Tucumán, Argentina. J Geophys Res 118 : 4483–4502. https://doi.org/10.1002/jgra.50378. [CrossRef] [Google Scholar]
- Alfonsi L, Cilliers PJ, Romano V, Hunstad I, Correia E, et al. 2016. First observations of GNSS ionospheric scintillations from DemoGRAPE project. Space Weather 14 : 704–709. https://doi.org/10.1002/2016SW001488. [CrossRef] [Google Scholar]
- Antonucci E. 1994. SOHO contribution to the understanding of mass supply and flows in the solar corona. Space Sci Rev 70 : 149. https://doi.org/10.1007/BF00777859. [NASA ADS] [CrossRef] [Google Scholar]
- Antonucci E, Fineschi S, Gardiol D, Noci G, Romoli M, et al. 2000. Ultraviolet and visible-light coronagraph for the solar orbiter mission. Proc SPIE 4139 : 378–389. https://doi.org/10.1117/12.410536. [NASA ADS] [CrossRef] [Google Scholar]
- Antonucci E, Romoli M, Andretta V, Fineschi S, Heinzel R, Moses JD, et al. 2019. Metis: the Solar Orbiter visible light and ultraviolet coronal imager. A&A . Forthcoming article. https://doi.org/10.1051/0004-6361/201935338. [Google Scholar]
- Armano M, Audley H, Baird J, Bassan M, Benella S, et al. 2018. Characteristics and energy dependence of recurrent galactic cosmic-ray flux depressions and of a Forbush decrease with LISA Pathfinder. ApJ 854 : 542–565. https://doi.org/10.3847/1538-4357/aaa774. [CrossRef] [Google Scholar]
- Asensio Ramos A, Trujillo Bueno J, Landi Degl’Innocenti E. 2008. Advanced forward modeling and inversion of stokes profiles resulting from the joint action of the Hanle and Zeeman effects. ApJ 683 : 542–565. https://doi.org/10.1086/589433. [NASA ADS] [CrossRef] [Google Scholar]
- Aslam OPM, Bisschoff D, Potgieter MS, Boezio M, Munini R. 2019. Modeling of heliospheric modulation of cosmic-ray positrons in a very quiet heliosphere. Astrophys J 873 : 70. https://doi.org/10.3847/1538-4357/ab05e6. [CrossRef] [Google Scholar]
- Bak-Steslicka U, Gibson SE, Fan Y, Bethge C, Forland B, Rachmeler LA. 2013. The magnetic structure of solar prominence cavities: new observational signature revealed by coronal magnetometry. ApJL 770 : L28. https://doi.org/10.1088/2041-8205/770/2/L28. [NASA ADS] [CrossRef] [Google Scholar]
- Battaglia M, Fletcher L, Benz AO. 2009. Observations of conduction driven evaporation in the early rise phase of solar flares. A&A 498(3): 891–900. https://doi.org/10.1051/0004-6361/200811196. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Belehaki A, James S, Hapgood M, Ventouras S, Galkin I, Lembesis A, Tsagouri I, Charisi A, Spogli L, Berdermann J, Häggström I. 2016. The ESPAS e-infrastructure: access to data from near-Earth space. Adv Space Res . 58 : 1177–1200. https://doi.org/10.1016/j.asr.2016.06.014. [Google Scholar]
- Bergeot N, Witasse O, Le Maistre S, Blelly P-L, Kofman W, Peter K, Dehant V, Chevalier J-M. 2019. MoMo: a new empirical model of the Mars ionospheric total electron content based on Mars Express MARSIS data. J Space Weather Space Clim 2019 ( 9 ) : A36. https://doi.org/10.1051/swsc/2019035. [CrossRef] [Google Scholar]
- Berrilli F, Bigazzi A, Roselli L, Sabatini P, Velli M, et al. 2010. The ADAHELI solar mission: investigating the structure of Sun’s lower atmosphere. Adv Space Res 45 : 1191–1202. https://doi.org/10.1016/j.asr.2010.01.026. [CrossRef] [Google Scholar]
- Berrilli F, Soffitta P, Velli M, Sabatini P, Bigazzi A, et al. 2015. ADAHELI+: exploring the fast, dynamic Sun in the x-ray, optical, and near-infrared. J Astron Telesc Instrum Syst 1 ( 4 ) : 044006. https://doi.org/10.1117/1.JATIS.1.4.044006. [CrossRef] [Google Scholar]
- Berrilli F, Casolino M, Del Moro D, Forte R, Giovannelli L, et al. 2018. SWERTO: a Regional Space Weather Service. Space Weather of the Heliosphere: Processes and Forecasts. Proc Int Astron Union: IAU Symp 335 : 348–351. https://doi.org/10.1017/S1743921318000054. [Google Scholar]
- Belov AV, Eroshenko EA, Kryakunova ON, KurtV VG, Geomagn Yanke G. 2010. Ground level enhancements of solar cosmic rays during the last three solar cycles. Geomagn Aeron 50 : 21–33. https://doi.org/10.1134/S0016793210010032. [CrossRef] [Google Scholar]
- Bindi V, Corti C, Consolandi C, Hoffman J, Whitman K. 2017. Overview of galactic cosmic ray solar modulation in the AMS-02 era. Adv Space Res 60 : 865–878. https://doi.org/10.1016/j.asr.2017.05.025. [CrossRef] [Google Scholar]
- Bisi MM, Jackson BV, Hick PP, Buffington A, Clover JM, et al. 2010. Three-dimensional reconstructions and mass determination of the 2008 June 2 LASCO coronal mass ejection using STELab interplanetary scintillation observations. Astrophys J Lett 715 ( 2 ) : L104–L108. https://doi.org/10.1088/2041-8205/715/2/L104. [NASA ADS] [CrossRef] [Google Scholar]
- Bombardieri DJ, Michael KJ, Duldig ML, Humble JE. 2007. Relativistic Proton Production during the 2001 April 15 Solar Event. Astrophys J 665 : 813–823. [NASA ADS] [CrossRef] [Google Scholar]
- Brown JC, Mcclymont AN, Mclean IS. 1974. Interpretation of solar hard X-ray burst polarisation measurements. Nature 247 : 448–449. https://doi.org/10.1038/247448a0. [CrossRef] [Google Scholar]
- Bruno A, Bazilevskaya GA, Boezio M, Christian ER, de Nolfo GA, et al. 2018. Solar energetic particle events observed by the PAMELA mission. Astrophys J 862 : 2. https://doi.org/10.3847/1538-4357/aacc26. [Google Scholar]
- Bruno R, Carbone V. 2013. The solar wind as a turbulence laboratory. Living Rev Solar Phys 10 ( 2 ) : 208. https://doi.org/10.12942/lrsp-2013-2. [NASA ADS] [CrossRef] [Google Scholar]
- Bruno R, Telloni D. 2015. Spectral analysis of magnetic fluctuations at proton scales from fast to slow solar wind. ApJ. 811 : 2. https://doi.org/10.1088/2041-8205/811/2/L17. [NASA ADS] [CrossRef] [Google Scholar]
- Buzulukova N, Fok MC, Roelof E, Redfern J, Goldstein J, et al. 2013. Comparative analysis of low-altitude ENA emissions in two substorms. J Geophys Res: Space Phys 118 : 24–731. https://doi.org/10.1002/jgra.50103. [CrossRef] [Google Scholar]
- Carbary JF, Kane M, Mauk BH, Krimigis SM. 2014. Using the kappa function to investigate hot plasma in the magnetospheres of the giant planets. J. Geophys Res: Space Phys 119 : 8426–8447. https://doi.org/10.1002/2014JA020324. [CrossRef] [Google Scholar]
- Capparelli V, Zuccarello F, Romano P, Simoes P, Fletcher L, et al. 2017. Hα and Hβ emission in a C3.3 solar flare: comparison between observations and simulations. Astrophys J 850 : 1: https://doi.org/10.3847/1538-4357/aa9187. [CrossRef] [Google Scholar]
- Casolino M, Bidoli V, Minori M, Narici L, De Pascale MP, et al. 2006. Relative nuclear abundances inside ISS with Sileye-3/Alteino experiment. Adv Space Res 37 : 1685–1690. https://doi.org/10.1016/j.asr.2006.02.050. [CrossRef] [Google Scholar]
- Charikov JE, Guzman AB, Kudryavtsev IV. 1996. Hard X-ray emission of solar flares and non-stationary kinetics of electron beams. A&A 308 : 924–928. [Google Scholar]
- Chisham G, Lester M, Milan SE, Freeman MP, Bristow WA, et al. 2007. A decade of the Super Dual Auroral Radar Network (SuperDARN): scientific achievements, new techniques and future directions. Surv Geophys 28 : 33–109. https://doi.org/10.1007/s10712-007-9017-8. [CrossRef] [Google Scholar]
- Consolini G, Grandioso S, Yordanova E, Marcucci MF, Pallocchia G. 2015a. Statistical and scaling features of fluctuations in the dissipation range during a reconnection event. Astrophys J 804 : 19. https://doi.org/10.1088/0004-637X/804/1/19. [CrossRef] [Google Scholar]
- Consolini G, Materassi M, Marcucci MF, Pallocchia G. 2015b. Statistics of the velocity gradient tensor in space plasma turbulent flows. Astrophys J 812 : 84. https://doi.org/10.1088/0004-637X/812/1/84. [CrossRef] [Google Scholar]
- Contarino L, Zuccarello F, Romano P, Spadaro D, Guglielmino SL, et al. 2009. Flare forecasting based on sunspot-groups characteristics. Acta Geophys 57 : 52–63. https://doi.org/10.2478/s11600-008-0067-1. [CrossRef] [Google Scholar]
- Corti C, Potgieter MS, Bindi V, Consolandi C, Light C, et al. 2019. Numerical modeling of galactic cosmic ray proton and helium observed by AMS-02 during the solar maximum of Solar Cycle 24. Astrophys J 871 : 253. https://doi.org/10.3847/1538-4357/aafac4. [CrossRef] [Google Scholar]
- De Franceschi G, Alfonsi L, Romano V. 2006. ISACCO: an Italian project to monitor the high latitudes ionosphere by means of GPS receivers. GPS Solut 10 ( 4 ) : 263–267. https://doi.org/10.1007/s10291-006-0036-6. [CrossRef] [Google Scholar]
- De la Cruz Rodríguez J, Socas-Navarro H, Carlsson M, Leenaarts J. 2012. Non-local thermodynamic equilibrium inversions from a 3D magnetohydrodynamic chromospheric model. A&A 543 : A34. https://doi.org/10.1051/0004-6361/201218825. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- De Michelis P, Consolini G. 2015. On the local Hurst exponent of magnetic field fluctuations: spatial distribution for different geomagnetic activity levels. J Geophys Res: Space Phys 120 : 2691–2701. https://doi.org/10.1002/2014JA020685. [CrossRef] [Google Scholar]
- De Michelis P, Consolini G, Tozzi R. 2015. Magnetic field fluctuation features at Swarm’s altitude: a fractal approach. Geophys Res Lett 42 : 3100–3105. https://doi.org/10.1002/2015GL063603. [CrossRef] [Google Scholar]
- De Michelis P, Consolini G, Tozzi R, Marcucci MF. 2016. Observations of high-latitude geomagnetic field fluctuations during St. Patrick storm: Swarm and SuperDARN measurements. Earth Planets Space 68 : 105. https://doi.org/10.1186/s40623-016-0476-3s. [CrossRef] [Google Scholar]
- De Michelis P, Consolini G, Tozzi R, Marcucci MF. 2017. Scaling features of high latitude geomagnetic field fluctuations at Swarm altitude. J Geophys Res: Space Phys 122 : 10548–10562. https://doi.org/10.1002/2017JA024156. [CrossRef] [Google Scholar]
- Denton MH, Ulich T, Turunen E. 2009. Modification of midlatitude ionospheric parameters in the F2 layer by persistent high-speed solar wind streams. Space Weather 7 : S04006. https://doi.org/10.1029/2008SW000443. [CrossRef] [Google Scholar]
- Eastwood JP, Nakamura R, Turc L, Mejnertsen L, Hesse M. 2017. The scientific foundations of forecasting magnetospheric space weather. Space Sci Rev 212 : 1221–1252. https://doi.org/10.1007/s11214-017-0399-8 [CrossRef] [Google Scholar]
- Emslie AG, Vlahos L. 1980. Radiation signatures from a locally energized flaring loop. Astrophys J 242 : 359–373. https://doi.org/10.1086/158469. [CrossRef] [Google Scholar]
- Emslie AG, Brown JC. 1980. The polarization and directivity of solar-flare hard X-ray bremsstrahlung from a thermal source. Astrophys J 237 : 1015–1023. https://doi.org/10.1086/157947. [CrossRef] [Google Scholar]
- Escoubet CP, Fehringer M, Goldstein M. 2001. Introduction: The Cluster mission. Ann Geophys 19 : 1197–1200. https://doi.org/10.5194/angeo-19-1197-2001. [Google Scholar]
- Escoubet CP, Taylor MGGT, Masson A, Laakso H, Volpp J, et al. 2013. Dynamical processes in space: Cluster results. Ann Geophys 31 : 1045–1059. https://doi.org/10.5194/angeo-31-1045-2013. [CrossRef] [Google Scholar]
- Escoubet CP, Masson A, Laakso H, Goldstein ML. 2015. Recent highlights from Cluster, the first 3-D magnetospheric mission. Ann Geophys 33 : 1221–1235. [CrossRef] [Google Scholar]
- Fabiani S, Muleri F. 2014. Astronomical X-ray polarimetry . Astronomia e Astrofisica, Aracne editrice. [Google Scholar]
- Fludra A, Doyle JG, Metcalf T, Lemen JR, Phillips KJH, et al. 1995. Evolution of two small solar flares. A&A 303 : 914. [Google Scholar]
- Forte R, Jefferies SM, Berrilli F, Del Moro D, Fleck B, et al. 2018. The MOTH II Doppler-Magnetographs and Data Calibration Pipeline. Space Weather Heliosph: Processes Forecasts Proc Int Astron Union: IAU Symp 335 : 335–339. https://doi.org/10.1017/S1743921318000029. [Google Scholar]
- Futaana Y, Barabash S, Grigoriev A, Holmström M, Kallio E, et al. 2006. First ENA observations at Mars: subsolar ENA jet. Icarus 182 : 413–423. https://doi.org/10.1016/j.icarus.2005.08.024. [CrossRef] [Google Scholar]
- Galli A, Wurza P, Bochslera P, Barabashb S, Grigoriev A, et al. 2008. First observation of energetic neutral atoms in the Venus environment. Planet Space Sci 56 : 807–811. https://doi.org/10.1016/j.pss.2007.12.011. [CrossRef] [Google Scholar]
- Garnier P, Dandouras I, Toublanc D, Brandt PC, Roelof EC, Mitchell DG, Krimigis SM, Krupp N, Hamilton DC, Waite H. 2007. The exosphere of Titan and its interaction with the kronian magneto-sphere: MIMI observations and modeling. Planet Space Sci 55 : 165–173. [CrossRef] [Google Scholar]
- Goldstein J, McComas DJ. 2013. Five years of stereo magnetospheric imaging by TWINS. Space Sci Rev 180 : 39–70. https://doi.org/10.1007/s11214-013-0012-8. [CrossRef] [Google Scholar]
- Greenwald RA, Baker KB, Dudeney JR, Pinnock M, Jones TB, et al. 1995. DARN/SuperDARN: a global view of high-latitude convection. Space Sci Rev 71 : 763–796. https://doi.org/10.1007/BF00751350. [Google Scholar]
- Guo J, Emslie AG, Kontar EP, Benvenuto F, Massone AM, et al. 2012a. Determination of the acceleration region size in a loop-structured solar flare. A&A 543 : A53. https://doi.org/10.1051/0004-6361/201219341. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Guo J, Emslie AG, Massone AM, Piana M. 2012b. Properties of the acceleration regions in several loop-structured solar flares. ApJ 755 : 32. https://doi.org/10.1088/0004-637X/755/1/32. [NASA ADS] [CrossRef] [Google Scholar]
- Haberreiter M, Delouille V, Del Zanna G, Dammasch I, Dominique M, et al. 2015. Modeling the EUV/UV irradiance within the FP7 SOLID project. Geophys Res Abstr 17 : EGU2015-14484. http://meetingorganizer.copernicus.org/EGU2015/EGU2015-14484.pdf. [Google Scholar]
- Hardi P, Abbo L, Andretta V, Auchère F, Bemporad A, et al. 2012. Solar magnetism eXplorer (SolmeX). Exploring the magnetic field in the upper atmosphere of our closest star. Exp Astron 33 : 271–303. https://doi.org/10.1007/s10686-011-9271-0. [NASA ADS] [CrossRef] [Google Scholar]
- Heilig B, Lühr H. 2013. New plasma pause model derived from CHAMP field-aligned current signatures. Ann Geophys 31 : 529–539. https://doi.org/10.5194/angeo-31-529-2013. [CrossRef] [Google Scholar]
- Ippolito A, Pommois P, Zimbardo G, Veltri P. 2005. Magnetic connection from the Earth to the solar corona, flare positions and solar energetic particle observations. A&A 438 : 2. https://doi.org/10.1051/0004-6361:20052776. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Keil W. 2007. Radiation effects on spacecraft and countermeasurements, selected cases. In: Space weather – research towards applications in Europe . Lilensten J (Ed.), Astrophysics and Space Science library 344, Springer, Dordrecht, The Netherlands. [CrossRef] [Google Scholar]
- Kerr GS, Fletcher L, Russell AJB, Allred JC. 2016. Simulations of the Mg II k and Ca II 8542 lines from an Alfvén Wave-heated flare chromosphere. Astrophys J 827 : 2. https://doi.org/10.3847/0004-637X/827/2/101. [CrossRef] [Google Scholar]
- Koskinen HEJ, Baker DN, Balogh A, Gombosi T, Veronig A, Von Steiger R. 2017. Achievements and challenges in the science of space weather. Space Sci Rev 212(3–4): 1137–1157. https://doi.org/10.1007/s11214-017-0390-4. [Google Scholar]
- Krimigis SM, Mitchell DG, Hamilton DC, Krupp N, Livi S, et al. 2005. Dynamics of Saturn’s magnetosphere from MIMI during Cassini’s orbital insertion. Science 307 : 1270–1273. https://doi.org/10.1126/science.1105978. [NASA ADS] [CrossRef] [Google Scholar]
- Krucker S, Battaglia M, Cargill PJ, Fletcher L, Hudson HS, et al. 2008. Hard X-ray emission from the solar corona. Astron Astrophys Rev 16 : 155. https://doi.org/10.1007/s00159-008-0014-9. [NASA ADS] [CrossRef] [Google Scholar]
- La Tessa C, Di Fino L, Larosa M, Narici L, Picozza P, et al. 2009. Estimate of the space station thickness at a USLab site using ALTEA measurements and fragmentation cross sections. Nuclear Inst Methods B 267 : 3383–3387. https://doi.org/10.1016/j.nimb.2009.06.107. [CrossRef] [Google Scholar]
- Lapenta G, Pierrard V, Keppens R, Markidis S, Poedts S, et al. 2013. SWIFF: space weather integrated forecasting framework. J Space Weather Space Clim 3 : A05. https://doi.org/10.1051/swsc/2013027. [CrossRef] [Google Scholar]
- Larosa M, Agostini F, Casolino M, De Santis C, Di Fino L, et al. 2011. Ion rates in the International Space Station during the December 2006 Solar Particle Event. J Phys G: Nucl Part Phys 38 : 095102. https://doi.org/10.1088/0954-3899/38/9/095102. [CrossRef] [Google Scholar]
- Laurenza M, Alberti T, Marcucci MF, Consolini G, Jacquey C, et al. 2019. Estimation of the particle radiation environment at l1 point and in the near-earth space. Astrophys J 873 : 112. https://doi.org/10.3847/1538-4357/ab0410. [CrossRef] [Google Scholar]
- Laurenza M, Vecchio A, Storini M, Carbone V. 2014. Drift effects on the galactic cosmic ray modulation. Astrophys J 781 : 71. https://doi.org/10.1088/0004-637X/781/2/71. [NASA ADS] [CrossRef] [Google Scholar]
- Laurenza M, Vecchio A, Storini M, Carbone V. 2012. Quasi-biennial modulation of galactic cosmic rays. Astrophys J 749 : 167. https://doi.org/10.1088/0004-637X/749/2/167. [NASA ADS] [CrossRef] [Google Scholar]
- Lester M. 2013. The Super Dual Auroral Radar Network (SuperDARN): an overview of its development and science. Adv Polar Sci 24 ( 1 ) : 1–11. https://doi.org/10.3724/SP.J.1085.2013.00001. [Google Scholar]
- Lilensten J, Belehaki A. 2009. Developing the scientific basis for monitoring, modelling and predicting space weather. Acta Geophys 57 : 1–14. https://doi.org/10.2478/s11600-008-0081-3. [CrossRef] [Google Scholar]
- Lilensten J, Coates AJ, Dehant V, Dudok de Wit T, Horne RB, et al. 2014. What characterizes planetary space weather? Astron Astrophys Rev 22 : 79 https://doi.org/10.1007/s00159-014-0079-6. [CrossRef] [Google Scholar]
- Lin RP, Hudson HS. 1976. Non-thermal processes in large solar flares. Sol Phys 50 : 153. https://doi.org/10.1007/BF00206199. [Google Scholar]
- Lingri D, Mavromichalaki H, Belov A, Eroshenko E, Yanke V, et al. 2016. Solar activity parameters and associated forbush decreases during the minimum between cycles 23 and 24 and the ascending phase of cycle 24. Solar Phys 291 ( 3 ) : 1025–1041. https://doi.org/10.1007/s11207-016-0863-8. [NASA ADS] [CrossRef] [Google Scholar]
- Lockwood M, Fazakerley A, Opgenoorth H, Moen J, van Eyken AP, et al. 2001. Coordinated Cluster and ground-based instrument observations of transient changes in the magnetopause boundary layer during an interval of predominantly northward IMF: relation to reconnection pulses and FTE signatures. Ann Geophys 19 : 1613–1640. https://doi.org/10.5194/angeo-19-1613-2001. [CrossRef] [Google Scholar]
- Massone AM, Piana M. 2013. The use of electron maps to constrain some physical properties of solar flares. Solar Phys 283 : 177–186. https://doi.org/10.1007/s11207-011-9844-0. [CrossRef] [Google Scholar]
- Magrì M, Oliviero M, Severino G. 2008. Accurate intensity – velocity phase difference in the potassium resonance line obtained with VAMOS. Solar Phys 247 : 15. https://doi.org/10.1007/s11207-007-9035-1. [Google Scholar]
- Mangano V, Massetti S, Milillo A, Plainaki C, Orsini S, Leblanc F. 2015. THEMIS Na exosphere observations of Mercury and their correlation with in-situ magnetic field measurements by MESSENGER. Planet Space Sci 115 : 102–109. https://doi.org/10.1016/j.pss.2015.04.001. [CrossRef] [Google Scholar]
- Mann G, Breitling F, Vocks C, et al. 2018. Tracking of an electron beam through the solar corona with LOFAR. A&A 611 : A57. https://doi.org/10.1051/0004-6361/201629017. [CrossRef] [EDP Sciences] [Google Scholar]
- Mannucci AJ, Dickson J, Duncan C, Hurst K. 2010. GNSS Geospace Constellation (GGC): a CubeSat space weather mission concept . Jet Propulsion Lab., California Inst. of Technology, TR, Pasadena, CA. http://www8.nationalacademies.org/SSBSurvey/DetailFileDisplay.aspx?id=881 [Google Scholar]
- Marcucci MF, Coco I, Ambrosino D, Amata E, Milan SE, et al. 2008. Extended SuperDARN and IMAGE observations for northward IMF: evidence for dual lobe reconnection. J Geophys Res 113 : A02204. https://doi.org/10.1029/2007JA012466. [Google Scholar]
- Martucci M, Munini R, Boezio M, Di Felice V, Adriani O, et al. 2018. Proton fluxes measured by the PAMELA experiment from the minimum to the maximum solar activity for solar Cycle 24. Astrophys J 854 : L2. https://doi.org/10.3847/2041-8213/aaa9b2. [CrossRef] [Google Scholar]
- Mavromichalaki H, Papaioannoua A, Plainakia C, Sarlanisa C, Souvatzoglou G, et al. 2011. Applications and usage of the real-time Neutron Monitor Database. Adv Space Res 47 ( 12 ) : 2210–2222. https://doi.org/10.1016/j.asr.2010.02.019. [CrossRef] [Google Scholar]
- Mauk BH, Mitchell DG, Krimigis SM, Roelof EC, Paranicas CP. 2003. Energetic neutral atoms from a trans-Europa gas torus at Jupiter. Nature. 421 : 920–922. https://doi.org/10.1038/nature01431. [CrossRef] [Google Scholar]
- McComas DJ, Allegrini F, Baldonado J, Blake B, Brandt PC, et al. 2009. The two wide-angle imaging neutral-atom spectrometers (TWINS) NASA mission-of-opportunity. Space Sci Rev 142 : 157. https://doi.org/10.1007/s11214-008-9467-4. [CrossRef] [Google Scholar]
- Messerotti M. 2018. Solar radio spectrography: comprehensive diagnostics for space weather applications. In: Proc. 2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC) . IEEE Explore Digital Library. https://doi.org/10.23919/URSI-AT-RASC.2018.8471360. [Google Scholar]
- Messerotti M. 2019. Radio science for space weather. In: Invited, Proc. 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), IEEE Xplore Digital Library. In press. [Google Scholar]
- Mewaldt RA, Leske RA, Stone EC, Barghouty AF, Labrador AW, et al. 2009. Stereo observations of energetic neutral hydrogen atoms during the 2006 December 5 solar flare. Astrophys J Lett 693 : 1. https://doi.org/10.1088/0004-637X/693/1/L11. [NASA ADS] [CrossRef] [Google Scholar]
- Miroshnichenko LI. 2018. Retrospective analysis of GLEs and estimates of radiation risks. J Space Weather Space Clim 8 : A52. https://doi.org/10.1051/swsc/2018042. [Google Scholar]
- Mitchell DG, Brandt PC, Roelof EC, Hamilton DC, Retterer KC, et al. 2003. Global imaging of O+ from IMAGE/HENA. Space Sci Rev 109 : 63. https://doi.org/10.1023/B:SPAC.0000007513.55076.00. [CrossRef] [Google Scholar]
- Milillo A, Fujimoto M, Kallio E, Kameda S, Leblanc F, et al. 2010. The BepiColombo mission: an outstanding tool for investigating the Hermean environment. Planet Space Sci 58(1–2): 40–60. https://doi.org/10.1016/j.pss.2008.06.005. [CrossRef] [Google Scholar]
- Mura A, Wurz P, Lichtenegger HIM, Schleicher H, Lammer H, et al. 2009. The sodium exosphere of Mercury: comparison between observations during Mercury’s transit and model results. Icarus 200 ( 1 ) : 1–11. https://doi.org/10.1016/j.icarus.2008.11.014. [NASA ADS] [CrossRef] [Google Scholar]
- Mura A, Adriani A, Altieri F, Connerney JEP, Bolton SJ, et al. 2017. Infrared observations of Jovian aurora from Juno’s first orbits: main oval and satellite footprints. Geophys Res Lett 44 ( 11 ) : 5308–5316. https://doi.org/10.1016/j.icarus.2008.11.01410.1002/2017GL072954. [CrossRef] [Google Scholar]
- Narici L, Casolino M, Di Fino L, Larosa M, Larsson O, et al. 2012. Iron flux inside the International Space Station is measured to be lower than predicted. Rad Meas 47 : 1030–1034. https://doi.org/10.1016/j.radmeas.2012.07.006. [CrossRef] [Google Scholar]
- Narici L, Casolino M, Di Fino L, Larosa M, Picozza P, et al. 2015. Radiation survey in the International Space Station. J Space Weather Space Clim 5 : A37. https://doi.org/10.1051/swsc/2015037. [CrossRef] [Google Scholar]
- Ngwira C, Pulkkinen A, Bernabeu E, Eichner J, Viljanen A, Crowley G. 2015. Characteristics of extreme geoelectric fields and their possible causes: localized peak enhancements. Geophys Res Lett 42 : 6916–6921. https://doi.org/10.1002/2015GL065061. [CrossRef] [Google Scholar]
- Opgenoorth HJ, Lockwood M, Alcaydé D, Donovan E, Engebretson MJ. 2001. Coordinated ground-based, low altitude satellite and Cluster observations on global and local scales during a transient post-noon sector excursion of the magnetospheric cusp. Ann Geophys 19 : 1367–1398. [CrossRef] [Google Scholar]
- Orsini S, Livi S, Torkar K, Barabash S, Milillo A, et al. 2010. SERENA: a suite of four instruments (ELENA, STROFIO, PICAM and MIPA) on board BepiColombo-MPO for particle detection in the Hermean Environment. BepiColombo Special Issue: Planet Space Sci 58 : 166–181. https://doi.org/10.1016/j.pss.2008.09.012. [NASA ADS] [CrossRef] [Google Scholar]
- Orsini S, Mangano V, Milillo A, Plainaki C, Mura A, et al. 2018. Mercury Na exospheric emission as a proxy for CME transit. Sci Rep 8 : 928. https://doi.org/10.1038/s41598-018-19163-x. [CrossRef] [Google Scholar]
- Paschmann G, Schwartz SJ, Escoubet CP, Haaland SE. 2005. Outer magnetospheric boundaries: Cluster results , Springer, Dordrecht, The Netherlands 118/1-4, ISBN: 1-4020-3488-1. [CrossRef] [Google Scholar]
- Pellizzoni A, Buffa F, Egron E, Iacolina MN, Loru S, et al. 2018. High-resolution imaging of the solar chromosphere in the centimetre-millimetre band through single-dish observations. Proc. 2018 2nd URSI Atlantic Radio Science Conference (AT-RASC), IEEE Explore Digital Library. https://doi.org/10.23919/URSI-AT-RASC.2018.8471502. [Google Scholar]
- Peres G, Reale F, Serio S, Pallavicini R. 1987. Hydrodynamic flare modeling – Comparison of numerical calculations with SMM observations of the 1980 November 12 17:00 UT flare. Astrophys. J. 312 : 895–908. https://doi.org/10.1086/164936. [NASA ADS] [CrossRef] [Google Scholar]
- Plainaki C, Negri B, Castronuovo M, Antonelli A. 2018. Towards an Italian Space Weather Infrastructure: The ASPIS project. Geophys Res Abstr 20 : EGU2018-5239. https://meetingorganizer.copernicus.org/EGU2018/EGU2018-5239.pdf. [Google Scholar]
- Plainaki C, Negri B, Castronuovo M. 2017. Proposal for a national Space Weather Infrastructure. SAIT 2017, Padova (Italy). [Google Scholar]
- Plainaki C, Lilensten J, Radioti A, Andriopoulou M, Milillo A, et al. 2016. Planetary space weather: Scientific aspects and future perspectives. J Space Weather Space Clim 6 : A31. https://doi.org/10.1051/swsc/2016024. [CrossRef] [Google Scholar]
- Plainaki C, Mavromichalaki H, Laurenza M, Gerontidou M, Kanellakopoulos A, Storini M. 2014. The Ground Level Enhancement of 2012 May 17: Derivation of solar proton event properties through the application of the NMBANGLE PPOLA model. Astrophys J 785 : 160. https://doi.org/10.1088/0004-637X/785/2/160. [NASA ADS] [CrossRef] [Google Scholar]
- Plainaki C, Mavromichalaki H, Belov A, Eroshenko E, Andriopoulou M, Yanke V. 2010. A new version of the neutron monitor based anisotropic GLE model: Application to GLE60. Sol Phys 264 ( 1 ) : 239–254. https://doi.org/10.1007/s11207-010-9576-6. [CrossRef] [Google Scholar]
- Plainaki C, Belov A, Eroshenko E, Mavromichalaki H, Yanke V. 2007. Modeling ground level enhancements: Event of 20 January 2005. J Geophys Res [Space Phys] 112 : 4102. https://doi.org/10.1029/2006JA011926. [CrossRef] [Google Scholar]
- Plainaki C, Mavromichalaki H, Belov A, Eroshenko E, Yanke V. 2009a. Modeling the solar cosmic ray event of 13 December 2006 using ground level neutron monitor data. Adv Space Res 43 : 474–479. https://doi.org/10.1016/j.asr.2008.07.011. [CrossRef] [Google Scholar]
- Plainaki C, Mavromichalaki H, Belov A, Eroshenko E, Yanke V. 2009b. Neutron monitor asymptotic directions of viewing during the event of 13 December 2006. Adv Space Res 43 : 518–522. https://doi.org/10.1016/j.asr.2008.09.007. [CrossRef] [Google Scholar]
- Plainaki C, Belov A, Eroshenko E, Kurt V, Mavromichalaki H, Yanke V. 2005. Unexpected burst of solar activity recorded by neutron monitors during October November 2003. Adv Space Res 35 : 691–696. https://doi.org/10.1016/j.asr.2004.11.023. [CrossRef] [Google Scholar]
- Pollock CJ, Asamura K, Balkey MM, Burch JL, Funsten HO, et al. 2001. First medium energy neutral atom (MENA) Images of Earth’s magnetosphere during substorm and storm-time. Geophys Res Lett 28 : 1147–1150. https://doi.org/10.1029/2000GL012641. [CrossRef] [Google Scholar]
- Procházka O, Milligan RO, Allred JC, Kowalski AF, Kotrč P, et al. 2017. Suppression of Hydrogen Emission in an X-class White-light Solar Flare. Astrophys J 837 : 46. https://doi.org/10.3847/1538-4357/aa5da8. [Google Scholar]
- Pulkkinen A, Bernabeu E, Thomson A, Viljanen A, et al. 2017. Geomagnetically induced currents: Science, engineering, and applications readiness. Space Weather 15 : 828–856. https://doi.org/10.1002/2016SW001501. [CrossRef] [Google Scholar]
- Pulkkinen A, Bernabeu E, Eichner J, Viljanen A, Ngwira C. 2015. Regional-scale high-latitude extreme geoelectric fields pertaining to geomagnetically induced currents. Earth Planets Space 67 : 93. https://doi.org/10.1186/s40623-015-0255-6. [CrossRef] [Google Scholar]
- Radicella SM. 2007. Ionosphere/positioning and telecommunications. In: Space Weather Research towards Applications in Europe , Lilensten J, (Ed.), Astrophysics and Space Science library 344, Springer. pp. 125–127. [CrossRef] [Google Scholar]
- Reid HAS, Kontar EP. 2018. Solar type III radio burst time characteristics at LOFAR frequencies and the implications for electron beam transport. A&A 614 : A69. https://doi.org/10.1051/0004-6361/201732298. [CrossRef] [EDP Sciences] [Google Scholar]
- Renotte E, Alia A, Bemporad A, Bernier J, Barmanti Cet al. 2015. Design status of ASPIICS, an externally occulted coronagraph for PROBA-3. Solar Physics and Space Weather Instrumentation VI Proceedings 96040A . https://doi.org/10.1117/12.2186962. [Google Scholar]
- Rice DD, Sojka JJ, Eccles JV, Raitt JW, Brady JJ, Hunsucker RD. 2011. First results of mapping sporadic E with a passive observing network. Space Weather 9 : S12001. https://doi.org/10.1029/2011SW000678. [Google Scholar]
- Rizzo A, Narici L, Messi R, Cipollone P, De Donato C, et al. 2018. A compact Time-Of-Flight detector for space applications: The LIDAL system. Nucl Instrum Methods Phys Res Sect A 898 : 98–104. https://doi.org/10.1016/j.nima.2018.05.009. [CrossRef] [Google Scholar]
- Rodriguez F, Ronchini R, Di Rollo S, De Franceschi G, Cesaroni C, et al. 2018. The ionosphere prediction service project. Geophys Res Abstr 20 : EGU2018-15908. https://meetingorganizer.copernicus.org/EGU2018/EGU2018-15908.pdf. [Google Scholar]
- Romano P, Guglielmino SL, Cristaldi A, Ermolli I, Falco M, et al. 2014. Evolution of the magnetic field inclination in a forming penumbra. Astrophys J 784 : 10. https://doi.org/10.1088/0004-637X/784/1/10. [Google Scholar]
- Romano V, Pau S, Pezzopane M, Spogli L, Zuccheretti L, et al. 2013. eSWua: A tool to manage and access GNSS ionospheric data from mid-to-high latitudes. Ann Geophys 56 ( 2 ) : R0223. https://doi.org/10.4401/ag-6244. [Google Scholar]
- Romoli M, Landini F, Antonucci E, Andretta V, Berlicki A, et al. 2017. METIS: The visible and UV coronagraph for solar orbiter. Proc SPIE 10563 : 105631M. https://doi.org/10.1117/12.2304274. [Google Scholar]
- Schrijver CJ, Kauristie K, Aylward AD, Denardini CM, Gibson SE, et al. 2015. Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS. Adv Space Res 55 : 2745–2807. https://doi.org/10.1016/j.asr.2015.03.023. [NASA ADS] [CrossRef] [Google Scholar]
- Schwartz SJ, Horbury T, Owen C, Baumjohann W, Nakamura R, et al. 2009. Cross-scale: multi-scale coupling in space plasmas. Exp Astron 23 : 1001–1015. https://doi.org/10.1007/s10686-008-9085-x. [CrossRef] [Google Scholar]
- Shinbori A, Otsuka Y, Tsugawa T, Nishioka M, Kumamoto A, et al. 2018. Temporal and spatial variations of storm time midlatitude ionospheric trough based on global GNSS-TEC and Arase satellite observations. Geophys Res Lett 45 : 7362–7370. https://doi.org/10.1029/2018GL078723. [CrossRef] [Google Scholar]
- Søraas F, Sørbø M. 2013. Low altitude observations of ENA from the ring current and from the proton oval. J Atmos Sol Terr Phys 99 : 104–110. https://doi.org/10.1016/j.jastp.2012.10.003. [CrossRef] [Google Scholar]
- Storini M, Signoretti F, Re P, Diego M, et al. 2015. Cosmic ray intensity for about five solar cycles. J Phys Conf Ser 632 ( 1 ) : 012065. [CrossRef] [Google Scholar]
- Susino R, Bemporad A. 2016. Determination of coronal mass ejection physical parameters from a combination of polarized visible light and UV Lyα observations. Astrophys J 830 : 58. https://doi.org/10.3847/0004-637X/830/2/58. [Google Scholar]
- Susino R, Bemporad A, Dolei S, Vourlidas A. 2013. Study of a coronal mass ejection with SOHO/UVCS and STEREO data. Adv Space Res 52 ( 5 ) : 957–962. https://doi.org/10.1016/j.asr.2013.05.017. [CrossRef] [Google Scholar]
- Tomassetti N, Orcinha M, Barão F, Bertucci B. 2017. Evidence for a time lag in solar modulation of galactic cosmic rays. Astrophys J Lett 849 : L32. https://doi.org/10.3847/2041-8213/aa9373. [CrossRef] [Google Scholar]
- Tomassetti N, Barão F, Bertucci B, Fiandrini E, Figueiredo JL, et al. 2018. Testing diffusion of cosmic rays in the heliosphere with proton and helium data from AMS. Phys Rev Lett : 121 , 251104. https://doi.org/10.1103/PhysRevLett.121.251104. [CrossRef] [Google Scholar]
- Tozzi R, Coco I, De Michelis P, Giannattasio F. 2019a. Latitudinal dependence of geomagnetically induced currents during geomagnetic storms. Annals of Geophysics 62 : GM448. https://doi.org/10.4401/ag-7788. [Google Scholar]
- Tozzi R, De Michelis P, Coco I, Giannattasio F. 2019b. A preliminary risk assessment due to geomagnetically induced currents over the Italian territory. Space Weather 17 : 46–58. https://doi.org/10.1029/2018SW002065. [CrossRef] [Google Scholar]
- Trattner KJ, Fuselier SA, Petrinec SM, Yeoman TK, Mouikis C, Kucharek H, Reme H. 2005. Reconnection sites of spatial cusp structures. J Geophys Res 110 : A04207. https://doi.org/10.1029/2004JA010722. [CrossRef] [Google Scholar]
- Treumann RA. 2009. Fundamentals of collisionless shocks for astrophysical application, 1. Non-relativistic shocks. Astron Astrophys Rev 17 : 409–535. https://doi.org/10.1007/s00159-009-0024-2. [CrossRef] [Google Scholar]
- Usoskin IG, Gil A, Kovaltsov GA, Mishev AL, Mikhailov VV. 2017. Heliospheric modulation of cosmic rays during the neutron monitor era: calibration using PAMELA data for 2006–2010. J Geophys Res Space Phys 122 : 3875–3887. https://doi.org/10.1002/2016JA023819. [Google Scholar]
- Vaivads A, Retinò A, Soucek J, Khotyaintsev YV, Valentini F, et al. 2016. Turbulence Heating ObserveR – satellite mission proposal. J Plasma Phys 82 ( 5 ) : 905820501. https://doi.org/10.1017/S0022377816000775. [CrossRef] [Google Scholar]
- Valek P, Goldstein J, McComas DJ, Ilie R, Buzulukova N, et al. 2013. Oxygen-hydrogen differentiated observations from TWINS: the 22 July 2009 storm. J Geophys Res 118 : 3377–3393. https://doi.org/10.1029/2012JA018465. [CrossRef] [Google Scholar]
- Vellante M, Piersanti M, Pietropaolo E. 2014. Comparison of equatorial plasma mass densities deduced from field line resonances observed at ground for dipole and IGRF models. J Geophys Res 119 : 2623–2633. https://doi.org/10.1002/2013JA019568. [CrossRef] [Google Scholar]
- Viscio MA, Viola N, Corpino S, Stesina F, Fineschi S, Fumentic F, Circi C. 2014. Interplanetary CubeSats system for space weather evaluations and technology demonstration. Acta Astronaut 104 ( 2 ) : 516–525. https://doi.org/10.1016/j.actaastro.2014.06.005. [CrossRef] [Google Scholar]
- Viticchié B, Sánchez Almeida J, Del Moro D, Berrilli F. 2011. Interpretation of HINODE SOT/SP asymmetric Stokes profiles observed in the quiet Sun network and internetwork. A&A 526 : A60. https://doi.org/10.1051/0004-6361/201015391. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Wild JA, Milan SE, Cowley SWH, Dunlop MW, Owen CJ, et al. 2003. Coordinated interhemispheric SuperDARN radar observations of the ionospheric response to flux transfer events observed by the Cluster spacecraft at the high-latitude magnetopause. Ann Geophys 21 : 1807–1826. https://doi.org/10.5194/angeo-21-1807-2003. [CrossRef] [Google Scholar]
- Wu X, Ambrosi G, Azzarello P, Bergmann B, Bertucci B. 2019. Penetrating particle ANalyzer (PAN). Adv Space Res 63 : 2672–2682. https://doi.org/10.1016/j.asr.2019.01.012. [CrossRef] [Google Scholar]
- Zaconte V, Casolino M, De Santis C, Di Fino L, La Tessa C, et al. 2010. The radiation environment in the ISS-USLab measured by ALTEA: spectra and relative nuclear abundances in the polar, equatorial and SAA regions. Adv Space Res 46 : 797–799. https://doi.org/10.1016/j.asr.2010.02.032. [CrossRef] [Google Scholar]
- Zanini A, Ciancio V, Laurenza M, et al. 2017. Environmental radiation dosimetry at Argentine Antarctic Marambio Base (64° 13′S, 56° 43′W): preliminary results. J Environ Radioact 175–176 : 149–157. https://doi.org/10.1016/j.jenvrad.2017.04.011. [CrossRef] [Google Scholar]
- Zharkova VV, Kuznetsov AA, Siversky TV. 2010. Diagnostics of energetic electrons with anisotropic distributions in solar flares. A&A 512 : A8. https://doi.org/10.1051/0004-6361/200811486. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Zharkova VV, Brown JC, Syniavskii DV. 1995. Electron beam dynamics and hard X-ray bremsstrahlung polarization in a flaring loop with return current and converging magnetic field. A&A 304 : 284. [Google Scholar]
- Zheng Y, Ganushkina NY, Jiggens P, Jun I, Meier M, Minow JI, et al. 2019. Space radiation and plasma effects on satellites and aviation: Quantities and metrics for tracking performance of space weather environment models. Space Weather 17 : 1384–1403. https://doi.org/10.1029/2018SW002042. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.