Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
|
|
---|---|---|
Article Number | 17 | |
Number of page(s) | 11 | |
Section | Agora | |
DOI | https://doi.org/10.1051/swsc/2020020 | |
Published online | 29 May 2020 |
- Adriani O, Barbarino G, Bazilevskaya G, Bellotti R, Boezio M, et al. 2016. Measurments of cosmic-ray hydrogen and helium isotopes with the PAMELA experiment. Astrophys J 818: https://doi.org/10.3847/0004-637X/818/1/68. [Google Scholar]
- Aguilar M, Alcaraz J, Allaby J, Alpat B, Ambrosi G, et al. 2010. Relative composition and energy spectra of light nuclei in cosmic rays: Results from AMS-01. Astrophys J 724(1): 329–340. https://doi.org/10.1088/0004-637X/724/1/329. [NASA ADS] [CrossRef] [Google Scholar]
- Artamonov A, Kovaltsov G, Mishev A, Usoskin I. 2016. Neutron monitor yield function for solar neutrons: A new computation. J Geophys Res Space Phys 121(1): 117–128. https://doi.org/10.1002/2015JA021993. [CrossRef] [Google Scholar]
- Aster R, Borchers B, Thurber CH. 2005. Parameter estimation and inverse problems. Elsevier, New York. ISBN 0-12-065604-3. [Google Scholar]
- Bazilevskaya GA, Usoskin IG, Flückiger E, Harrison R, Desorgher L, et al. 2008. Cosmic ray induced ion production in the atmosphere. Space Sci Rev 137: 149–173. https://doi.org/10.1007/978-0-387-87664-1. [NASA ADS] [CrossRef] [Google Scholar]
- Beatty J, Matthews J, Wakely S. 2018. Cosmic Rays. In: M. Tanabashi et al., Review of Particle Physics, 424–432. Physical Review D 98, 030001, 2018 [Google Scholar]
- Bieber J, Evenson P. 1995. Spaceship Earth – an optimized network of neutron monitors. In: Proc. of 24th ICRC Rome, Italy, 28 August – 8 September 1995, Vol. 4, 1316–1319. [Google Scholar]
- Bombardieri D, Duldig M, Michael K, Humble J. 2006. Relativistic proton production during the 2000 July 14 solar event: The case for multiple source mechanisms. Astrophys J 644(1): 565–574. https://doi.org/10.1086/501519. [CrossRef] [Google Scholar]
- Bütikofer R. 2018a. Cosmic ray particle transport in the Earth’s magnetosphere. In: Solar Particle Radiation Storms Forecasting and Analysis, The HESPERIA HORIZON 2020 Project and Beyond, Springer Nature, Cham, Switzerland, pp. 79–94. ISBN 978-3-319-60051-2 [Google Scholar]
- Bütikofer R. 2018b. Ground-based measurements of energetic particles by neutron monitors. In: Solar particle radiation storms forecasting and analysis, The HESPERIA HORIZON 2020 project and beyond, Springer Nature, Cham, Switzerland, Chap. 6, pp. 95–112. ISBN 978-3-319-60051-2 [Google Scholar]
- Carmichael H. 1968. Cosmic rays (instruments). In: Ann. IQSY, Minnis CM (Ed.), vol 1, MIT Press, Cambridge, MA, pp. 178–197. [Google Scholar]
- Clem J. 1997. Contribution of obliquely incident particles to neutron monitor counting rate. J Geophys Res 102: 919. https://doi.org/10.1029/97JA02366. [CrossRef] [Google Scholar]
- Clem J, Dorman L. 2000. Neutron monitor response functions. Space Sci Rev 93: 335–359. https://doi.org/10.1023/A:1026508915269. [NASA ADS] [CrossRef] [Google Scholar]
- Cliver E, Kahler S, Reames D. 2004. Coronal shocks and solar energetic proton events. Astrophys J 605: 902–910. https://doi.org/10.1086/382651. [NASA ADS] [CrossRef] [Google Scholar]
- Copeland K. 2017. CARI-7A: Development and validation. Radiat. Prot. Dosim. 175(4): 419–431. https://doi.org/10.1093/rpd/ncw369. [Google Scholar]
- Copeland K, Atwell W. 2019. Flight safety implications of the extreme solar proton event of 23 February 1956. Adv Space Res 63(1): 665–671. https://doi.org/10.1016/j.asr.2018.11.005. [CrossRef] [Google Scholar]
- Cramp J, Duldig M, Flückiger E, Humble J, Shea M, Smart D. 1997. The October 22, 1989, solar cosmic ray enhancement: An analysis the anisotropy spectral characteristics. J Geophys Res 102(A11): 24237–24248. https://doi.org/10.1029/97JA01947. [NASA ADS] [CrossRef] [Google Scholar]
- Debrunner H, Brunberg E. 1968. Monte Carlo calculation of nucleonic cascade in the atmosphere. Can J Phys 46: 1069. [CrossRef] [Google Scholar]
- Dennis J, Schnabel R. 1996. Numerical methods for unconstrained optimization and nonlinear equations. Prentice-Hall, Englewood Cliffs. ISBN 13-978-0-898713-64-0. [CrossRef] [Google Scholar]
- Desai M, Giacalone J. 2016. Large gradual solar energetic particle events. Living Rev Sol Phys 13(1): 3. https://doi.org/10.1007/s41116-016-0002-5. [CrossRef] [Google Scholar]
- Desorgher L, Flückiger E, Gurtner M, Moser M, Bütikofer R. 2005. A GEANT 4 code for computing the interaction of cosmic rays with the Earth’s atmosphere. Int J Mod Phys A 20(A11): 6802–6804. https://doi.org/10.1142/S0217751X05030132. [Google Scholar]
- Dorman L. 2010. Solar Neutrons and Related Phenomena. Astrophysics and Space Science Library 365. Springer, Dordrecht. ISBN 978-90-481-3737-4. [CrossRef] [Google Scholar]
- Dorman L, Pustil’nik L, Dai U, Idler M, Keshtova F, Petrov E. 2019. Is it possible to organize automatic forecasting of expected radiation hazard level from Solar Cosmic Ray (SCR) events for spacecraft in the heliosphere and magnetosphere and for aircraft in the low Atmosphere? Adv Space Res 64(12): 2490–2508. https://doi.org/10.1016/j.asr.2019.09.038. [CrossRef] [Google Scholar]
- Dorman LI, Villoresi G, Iucci N, Parisi M, Tyasto MI, Danilova OA, Ptitsyna NG. 2000. Cosmicray survey to Antarctica and coupling functions for neutron component near solar minimum (1996–1997): 3. Geomagnetic effects and coupling functions. J Geophys Res 105(A9): 21047–21056. https://doi.org/10.1029/2000JA900051. [CrossRef] [Google Scholar]
- EURATOM. 2014. Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Official J Eur Commun 57(L13): 2014. [Google Scholar]
- Ferrari A, Pelliccioni M, Rancati T. 2001. Calculation of the radiation environment caused by galactic cosmic rays for determining air crew exposure. Radiat Prot Dosim 93(2): 101–114. [CrossRef] [Google Scholar]
- Flükiger E, Moser E, Pirard E, Bütikofer R, Desorgher L. 2008. A parameterized neutron monitor yield function for space weather applications. In: Proc. of 30th ICRC Merida, Yacatan, Mexico, 3–11 July 2007, Vol. 1, pp. 289–292. [Google Scholar]
- Gil A, Kovaltsov GA, Mikhailov V, Mishev A, Poluianov S, Usoskin I. 2018. An anisotropic cosmic-ray enhancement event on 07-June-2015: A possible origin. Sol Phys 293: 154. https://doi.org/10.1007/s11207-018-1375-5. [CrossRef] [Google Scholar]
- Gil A, Usoskin I, Kovaltsov G, Mishev A, Corti C, Bindi V. 2015. Can we properly model the neutron monitor count rate? J Geophys Res 120: 7172–7178. https://doi.org/10.1002/2015JA021654. [CrossRef] [Google Scholar]
- Grieder P. 2001. Cosmic rays at Earth researcher’s reference manual and data book. Elsevier Science, Amsterdam. ISBN 978-0-444-50710-5. [Google Scholar]
- Grieder P. 2011. Extensive air showers: high energy phenomena and astrophysical aspects – A Tutorial, Reference Manual and Data Book, Springer, Space Science Library. ISBN 978-3540769408. [Google Scholar]
- Hatton C. 1971. The neutron monitor. In: Progress in Elementary Particle and Cosmic-ray Physics X, Chap. 1, North Holland Publishing, Co., Amsterdam. [Google Scholar]
- Hatton C, Carmichael H. 1964. Experimental Investigation of the NM-64 Neutron Monitor. Can J Phys 42: 2443–2472. [CrossRef] [Google Scholar]
- Himmelblau D. 1972. Applied Nonlinear Programming, McGraw-Hill, Tx. ISBN 978-0070289215. [Google Scholar]
- Hurford G, Schwartz R, Krucker S, Lin R, Smith D, Vilmer N. 2003. First gamma-ray images of a solar flare. Astrophys J, 595(2 II): L77–L80. https://doi.org/10.1086/378179. [NASA ADS] [CrossRef] [Google Scholar]
- ICRP. 1996. ICRP publication 74: Conversion coefficients for use in radiological protection against external radiation. Ann ICRP 26(3–4). [Google Scholar]
- Klein K-L, Dalla S. 2017. Acceleration and propagation of solar energetic particles. Space Sci Rev 212(3–4): 1107–1136. https://doi.org/10.1007/s11214-017-0382-4. [CrossRef] [Google Scholar]
- Kocharov L, Pohjolainen S, Mishev A, Reiner M, Lee J, et al. 2017. Investigating the origins of two extreme solar particle events: Proton source profile and associated electromagnetic emissions. Astrophys J 839(2): 79. https://doi.org/10.3847/1538-4357/aa6a13. [Google Scholar]
- Koldobskiy S, Kovaltsov GA, Mishev A, Usoskin IG. 2019a. New method of assessment of the integral fluence of solar energetic (>1 GV rigidity) particles from neutron monitor data. Sol Phys 294: 94. https://doi.org/10.1007/s11207-019-1485-8. [Google Scholar]
- Koldobskiy SA, Bindi V, Corti C, Kovaltsov GA, Usoskin IG. 2019b. Validation of the neutron monitor yield function using data from AMS-02 experiment 2011–2017. J. Geophys. Res. (Space Phys.) 124: 2367–2379. https://doi.org/10.1029/2018JA026340. [Google Scholar]
- Koskinen H, Baker D, Balogh A, Gombosi T, Veronig A, von Steiger R. 2017. Achievements and challenges in the science of space weather. Space Sci Rev 212(3–4): 1137–1157. https://doi.org/10.1007/s11214-017-0390-4. [Google Scholar]
- Kuwabara T, Bieber J, Clem J, Evenson P, Pyle R. 2006a. Development of a ground level enhancement alarm system based upon neutron monitors. Space Weather 4(10): S10,001, https://doi.org/10.1029/2006SW000223. [Google Scholar]
- Kuwabara T, Bieber J, Clem J, Evenson P, Pyle R, et al. 2006b. Real-time cosmic ray monitoring system for space weather. Space Weather 4(8). https://doi.org/10.1029/2005SW000204. [Google Scholar]
- Latocha M, Beck P, Rollet S. 2009. AVIDOS-a software package for European accredited aviation dosimetry. Radiation Protection Dosimetry 136(4): 286–290. https://doi.org/10.1093/rpd/ncp126. [CrossRef] [Google Scholar]
- Lilensten L, Bornarel J. 2009. Space Weather, Environment and Societies. Springer, Dordrecht. ISBN 978-1-4020-4332-1. [Google Scholar]
- Lingenfelter RE, Flamm EJ, Canfield EH, Kellman S. 1965. High-energy solar neutrons: 1. Production in flares. J Geophys Res 70(17): 4077–4086. [NASA ADS] [CrossRef] [Google Scholar]
- Mangeard P-S, Ruffolo D, Sáiz A, Madlee S, Nutaro T. 2016. Monte Carlo simulation of the neutron monitor yield function. J Geophys Res A Space Phys 121(8): 7435–7448. https://doi.org/10.1002/2016JA022638. [Google Scholar]
- Mavrodiev S, Mishev A, Stamenov J. 2004. A method for energy estimation and mass composition determination of primary cosmic rays at the Chacaltaya observation level based on the atmospheric Cherenkov light technique. Nuclear instruments and methods in physics research, section A: Accelerators, spectrometers, detectors and associated equipment 530(3): 359–366. https://doi.org/10.1016/j.nima.2004.04.226. [CrossRef] [Google Scholar]
- Mavromichalaki H, Gerontidou M, Paschalis P, Paouris E, Tezari A, Sgouropoulos C, Crosby N, Dierckxsens M. 2018. Real-time detection of the ground level enhancement on 10 September 2017 by A.Ne.Mo.S.: System Report. Space Weather 16(11): 1797–1805. https://doi.org/10.1029/2018SW001992. [CrossRef] [Google Scholar]
- Mavromichalaki H, Papaioannou A, Plainaki C, Sarlanis C, Souvatzoglou G, et al. 2011. Applications and usage of the real-time Neutron Monitor Database. Adv Space Res 47: 2210–2222. https://doi.org/10.1016/j.asr.2010.02.019. [CrossRef] [Google Scholar]
- Mewaldt R. 2006. Solar energetic particle composition, energy spectra, and space weather. Space Sci Rev 124(1–4): 303–316. https://doi.org/10.1007/s11214-006-9091-0. [Google Scholar]
- Mironova I, Aplin K, Arnold F, Bazilevskaya G, Harrison R, Krivolutsky A, Nicoll K, Rozanov E, Turunen E, Usoskin I. 2015. Energetic particle influence on the Earths atmosphere. Space Sci Rev 96: https://doi.org/10.1007/s11214-015-0185-4. [Google Scholar]
- Miroshnichenko L. 2018. Retrospective analysis of GLEs and estimates of radiation risks. J Space Weather Space Clim 8: A52. https://doi.org/10.1051/swsc/2018042. [Google Scholar]
- Mishev A, Jiggens P. 2019. Preface to measurement, specification and forecasting of the Solar Energetic Particle (SEP) environment and Ground Level Enhancements (GLEs). J Space Weather Space Clim 9: E1. https://doi.org/110.1051/swsc/2019003. [CrossRef] [Google Scholar]
- Mishev A, Kocharov L, Usoskin I. 2014. Analysis of the ground level enhancement on 17 May 2012 using data from the global neutron monitor network. J Geophys Res 119: 670–679. https://doi.org/10.1002/2013JA019253. [NASA ADS] [CrossRef] [Google Scholar]
- Mishev A, Mavrodiev S, Stamenov J. 2005. Gamma rays studies based on atmospheric Cherenkov technique at high mountain altitude. Int J Mod Phys A 20(29): 7016–7019. https://doi.org/10.1142/S0217751X05030727. [CrossRef] [Google Scholar]
- Mishev A, Poluianov S, Usoskin S. 2017. Assessment of spectral and angular characteristics of sub-GLE events using the global neutron monitor network. J Space Weather Space Clim 7: A28. https://doi.org/10.1051/swsc/2017026. [CrossRef] [Google Scholar]
- Mishev A, Tuohino S, Usoskin I. 2018a. Neutron monitor count rate increase as a proxy for dose rate assessment at aviation altitudes during GLEs. J Space Weather Space Clim 8: A46. https://doi.org/10.1051/swsc/2018032. [CrossRef] [Google Scholar]
- Mishev A, Usoskin I. 2015. Numerical model for computation of effective and ambient dose equivalent at flight altitudes: Application for dose assessment during GLEs. J Space Weather Space Clim 5(3): A10. https://doi.org/10.1051/swsc/2015011. [CrossRef] [EDP Sciences] [Google Scholar]
- Mishev A, Usoskin I. 2016a. Analysis of the ground level enhancements on 14 July 2000 and on 13 December 2006 using neutron monitor data. Sol Phys 291(4): 1225–1239. https://doi.org/10.1007/s11207-016-0877-2. [CrossRef] [Google Scholar]
- Mishev A, Usoskin I. 2018. Assessment of the radiation environment at commercial jet-flight altitudes during GLE 72 on 10 September 2017 using neutron monitor data. Space Weather 16(12): 1921–1929. https://doi.org/10.1029/2018SW001946. [CrossRef] [Google Scholar]
- Mishev A, Usoskin I, Kovaltsov G. 2013. Neutron monitor yield function: New Improved computations. J Geophys Res 118: 2783–2788. https://doi.org/10.1002/jgra.50325. [Google Scholar]
- Mishev A, Usoskin I, Raukunen O, Paassilta M, Valtonen E, Kocharov L, Vainio R. 2018b. First analysis of GLE 72 event on 10 September 2017: Spectral and anisotropy characteristics. Sol Phys 293: 136. https://doi.org/10.1007/s11207-018-1354-x. [CrossRef] [Google Scholar]
- Mishev AL, Koldobskiy SA, Kovaltsov GA, Gil A, Usoskin IG. 2020. Updated neutron-monitor yield function: bridging between in situ and ground-based cosmic ray measurements. J Geophys Res Space Phys 125(2): e2019JA027, 433. https://doi.org/10.1029/2019JA027433. [CrossRef] [Google Scholar]
- Moraal H, Belov A, Clem J. 2000. Design and co-ordination of multi-station international neutron monitor networks. Space Sci Rev 93(1–2): 285–303. https://doi.org/10.1023/A:1026504814360. [CrossRef] [Google Scholar]
- Moraal H, McCracken K. 2012. The time structure of ground level enhancements in solar cycle 23. Space Sci Rev 171(1–4): 85–95. https://doi.org/10.1007/s11214-011-9742-7. [CrossRef] [Google Scholar]
- Nagashima K, Sakakibara S, Murakami K, Morishita I. 1989. Response and yield functions of neutron monitor, galactic cosmic-ray spectrum and its solar modulation, derived from all the available worldwide surveys. Il Nuovo Cimento C 12(2): 173–209. [CrossRef] [Google Scholar]
- Nuntiyakul W, Sa′iz A, Ruffolo D, Mangeard P-S, Evenson P, Bieber J, Clem J, Pyle R, Duldig M, Humble J. 2018. Bare neutron counter and neutron monitor response to cosmic rays during a 1995 latitude survey. J Geophys Res A Space Phys 123(9): 7181–7195. https://doi.org/10.1029/2017JA025135. [CrossRef] [Google Scholar]
- Papaioannou A, Souvatzoglou G, Paschalis P, Gerontidou M, Mavromichalaki H. 2014. The first ground-level enhancement of solar cycle 24 on 17 May 2012 and its real-time detection. Sol Phys 289(1): 423–436. https://doi.org/10.1007/s11207-013-0336-2. [NASA ADS] [CrossRef] [Google Scholar]
- Petoussi-Henss N, Bolch W, Eckerman K, Endo A, Hertel N, Hunt J, Pelliccioni M, Schlattl H, Zankl M. 2010. Conversion coefficients for radiological protection quantities for external radiation exposures. Ann ICRP 40(2–5): 1–257. [CrossRef] [Google Scholar]
- Poluianov S, Usoskin I, Mishev A, Moraal H, Krüger H, Casasanta G, Traversi R, Udisti R. 2015. Mini neutron monitors at Concordia research station, Central Antarctica. J Astron Space Sci 32(4): 281–287. [CrossRef] [Google Scholar]
- Poluianov S, Usoskin I, Mishev A, Shea M, Smart D. 2017. GLE and Sub-GLE redefinition in the light of high-altitude polar neutron monitors. Sol Phys 292(11): 176. https://doi.org/10.1007/s11207-017-1202-4. [Google Scholar]
- Pulkkinen T. 2007. Space weather: Terrestrial perspective. Living Rev Sol Phys 4(1): 1–60. https://doi.org/10.12942/lrsp-2007-1. [CrossRef] [Google Scholar]
- Raubenheimer B, Niekerk FV, Potgeiter M. 1981. Differential response functions from latitude surveys. I: Theory. In: Proc. of 17th ICRC Paris, France, 13–25 July 1981, Vol. 4: 321. [Google Scholar]
- Shea M, Smart D. 1982. Possible evidence for a rigidity-dependent release of relativistic protons from the solar corona. Space Sci Rev 32: 251–271. [Google Scholar]
- Shea M, Smart D. 1990. A summary of major solar proton events. Sol Phys 127: 297–320. https://doi.org/10.1007/BF00152170. [NASA ADS] [CrossRef] [Google Scholar]
- Shea M, Smart D. 2000a. Cosmic ray implications for human health. Space Sci Rev 93(1–2): 187–205. https://doi.org/10.1023/A:1026544528473. [NASA ADS] [CrossRef] [Google Scholar]
- Shea M, Smart D. 2000b. Fifty years of cosmic radiation data. Space Sci Rev 93(1–2): 229–262. https://doi.org/10.1023/A:1026500713452. [NASA ADS] [CrossRef] [Google Scholar]
- Shea M, Smart D. 2012. Space weather and the ground-level solar proton events of the 23rd solar cycle. Space Sci Rev 171: 161–188. https://doi.org/10.1007/s11214-012-9923-z. [Google Scholar]
- Simpson J. 1957. Cosmic-radiation neutron intensity monitor. Ann Inter Geophys Yr 4: 351–373. [Google Scholar]
- Simpson J. 2000. The cosmic ray nucleonic component: The Invention and scientific uses of the neutron monitor. Space Sci Rev 93: 11–32. https://doi.org/10.1023/A:1026567706183. [NASA ADS] [CrossRef] [Google Scholar]
- Simpson J, Fonger W, Treiman S. 1953. Cosmic radiation intensity-time variation and their origin. I. Neutron intensity variation method and meteorological factors. Phys Rev 90: 934–950. [CrossRef] [Google Scholar]
- Souvatzoglou G, Papaioannou A, Mavromichalaki H, Dimitroulakos J, Sarlanis C. 2014. Optimizing the real-time ground level enhancement alert system based on neutronmonitor measurements: Introducing GLE Alert Plus. Space Weather 12(11): 633–649. https://doi.org/10.1002/2014SW001102. [CrossRef] [Google Scholar]
- Spurny F, Votockova I, Bottollier-Depois J. 1996. Geographical influence on the radiation exposure of an aircrew on board a subsonic aircraft. Radioprotection 31(2): 275–280. [Google Scholar]
- Spurny F, Dachev T, Kudela K. 2002. Increase of onboard aircraft exposure level during a solar flare. Nuc Eng Saf 10(48): 396–400. [Google Scholar]
- Stoker P. 1995. Relativistic solar proton events. Space Sci Rev 73(3–4): 327–385. https://doi.org/10.1007/BF00751240. [Google Scholar]
- Stoker P, Dorman L, Clem J. 2000. Neutron monitor design improvements. Space Sci Rev 93(1–2): 361–380. https://doi.org/10.1007/978-94-017-1187-6. [NASA ADS] [CrossRef] [Google Scholar]
- Thébault E, Finlay CC, Beggan CD, Alken P, Aubert J, et al. 2015. International Geomagnetic Reference Field: the 12th generation. Earth, Planets Space 67(1): 79. https://doi.org/10.1186/s40623-015-0228-9. [CrossRef] [Google Scholar]
- Tikhonov A, Goncharsky A, Stepanov V, Yagola A. 1995. Numerical methods for solving ill-posed problems. Kluwer Academic Publishers, Dordrecht. ISBN 978-90-481-4583-6. [CrossRef] [Google Scholar]
- Usoskin I, Alanko-Huotari K, Kovaltsov G, Mursula K. 2005. Heliospheric modulation of cosmic rays: Monthly reconstruction for 1951–2004. J Geophys Res 110: A12108. https://doi.org/10.1029/2005JA011250. [Google Scholar]
- Usoskin I, Ibragimov A, Shea M, Smart D. 2015. Database of ground level enhancements (GLE) of high energy solar proton events. In: Proceedings of Science, Proc. of 34th ICRC, Hague, Netherlands, 30 July–6 August 2015, p. 054. [Google Scholar]
- Usoskin I, Kovaltsov G, Mironova I, Tylka A, Dietrich W. 2011. Ionization effect of solar particle GLE events in low and middle atmosphere. Atmos Chem Phys 11: 1979–1988. https://doi.org/10.5194/acpd-10-30381-2010. [NASA ADS] [CrossRef] [Google Scholar]
- Usoskin I, Kovaltsov GA, Kananen H, Tanskanen P. 1997. The World Neutron Monitor Network as a tool for the study of solar neutrons. Ann Geophys 15: 375–386. https://doi.org/10.1007/s00585-997-0375-9. [CrossRef] [Google Scholar]
- Vainio R, Desorgher L, Heynderickx D, Storini M, Flückiger E, et al. 2009. Dynamics of the Earth’s particle radiation environment. Space Sci Rev 147(3–4): 187–231. https://doi.org/10.1007/s11214-009-9496-7. [CrossRef] [Google Scholar]
- Vashenyuk E, Balabin Y, Miroshnichenko L. 2008. Relativistic solar protons in the ground level event of 23 February 1956: New study. Adv Space Res 41(6): 926–935. https://doi.org/10.1016/j.asr.2007.04.063. [CrossRef] [Google Scholar]
- Vashenyuk E, Balabin Y, Perez-Peraza J, Gallegos-Cruz A, Miroshnichenko L. 2006b. Some features of the sources of relativistic particles at the Sun in the solar cycles 21–23. Adv Space Res 38(3): 411–417. https://doi.org/10.1016/j.asr.2005.05.012. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Vos E, Potgieter M. 2015. New modeling of galactic proton modulation during the minimum of solar cycle 23/24. Astrophys J 815: 119. https://doi.org/10.1088/0004-637X/815/2/119. [Google Scholar]
- Yang Z, Sheu R. 2020. An in-depth analysis of aviation route doses for the longest distance flight from Taiwan. Radiat Phys Chem 168: 108548. https://doi.org/10.1016/j.radphyschem.2019.108548. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.