Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
Topical Issue - Scientific Advances from the European Commission H2020 projects on Space Weather
|
|
---|---|---|
Article Number | 18 | |
Number of page(s) | 21 | |
DOI | https://doi.org/10.1051/swsc/2020019 | |
Published online | 29 May 2020 |
- Akmaev RA, Fuller-Rowell TJ, Wu F, Forbes JM, Zhang X, et al. 2008. Tidal variability in the lower thermosphere: Comparison of Whole Atmosphere Model (WAM) simulations with observations from TIMED. Geophys Res Lett 35: L03810. https://doi.org/10.1029/2007GL032584. [CrossRef] [Google Scholar]
- Allen T, Zerroukat M. 2016. A deep non-hydrostatic compressible atmospheric model on a Yin-Yang grid. J Comput Phys 319: 44–60. https://doi.org/10.1016/j.jcp.2016.05.022. [CrossRef] [Google Scholar]
- Allen T, Zerroukat M. 2018. A consistent treatment of the boundary layer for atmospheric models. Quart J Roy Meterol Soc 144: 2156–2164. [CrossRef] [Google Scholar]
- Bala R, Reiff P. 2012. Improvements in short-term forecasting of geomagnetic activity. Space Weather 10: S06001. https://doi.org/10.1029/2012SW000779. [CrossRef] [Google Scholar]
- Balikhin MA, Boaghe OM, Billings SA, Alleyne HStCK. 2001. Terrestrial magnetosphere as a nonlinear resonator. Geophys Res Lett 28: 1123–1126. [CrossRef] [Google Scholar]
- Barlier F, Berger C, Falin JL, Kockarts G, Thuillier G. 1978. A thermospheric model based on satellite drag data. Ann Geophys 34: 9–24. [Google Scholar]
- Bartels J. 1957. The technique of scaling indices K and Q of geomagnetic activity. Ann Intern Geophys Year 4: 215–226. [Google Scholar]
- Bartels J. 1957. The geomagnetic measures for the time-variations of solar corpuscular radiation, described for use in correlation studies in other geophysical fields. Ann Intern Geophys Year 4: 227–236. [Google Scholar]
- Berger C, Biancale R, Ill M, Barlier F. 1998. Improvement of the empirical thermospheric model DTM: DTM-94- comparative review on various temporal variations and prospects in space geodesy applications. J Geodesy 72: 161–178. [CrossRef] [Google Scholar]
- Billett DD, Grocott A, Wild JA, Walach M-T, Kosch MJ. 2018. Diurnal variations in global Joule heating morphology and magnitude due to neutral winds. J Geophys Res Space Phys 123: 2398–2411. https://doi.org/10.1002/2017JA025141. [Google Scholar]
- Boaghe OM, Balikhin MA, Billings SA, Alleyne H. 2001. Identification of nonlinear processes in the magnetospheric dynamics and forecasting of Dst index. J Geophys Lett 106: 30047–30066. [CrossRef] [Google Scholar]
- Boberg F, Wintoft P, Lundstedt H. 2000. Real time Kp predictions from solar wind data using neural networks. Phys Chem Earth, Part C 25(4): 275. [CrossRef] [Google Scholar]
- Bollacker KD, Ghosh J. 1996. Linear feature extractors based on mutual information. In: Proceedings of 13th International Conference on Pattern Recognition 2: 720–724. [Google Scholar]
- Bowman BR, Marcos FA, Kendra MJ. 2004. A method for computing accurate daily atmospheric density values from satellite drag data, AAS 04–173. In: 14th AAS/AIAA Space Flight Mechanics Conference. Maui, Hawaii, 2004. [Google Scholar]
- Bowman BR, Tobiska WK, Marcos F, Huang CY, Lin CS, et al. 2008. A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices, AIAA 2008–6438. In: AIAA/AAS Astrodynamics Specialist Conference, Honolulu, Hawaii, 2008. [Google Scholar]
- Bruinsma S, Forbes JM, Nerem RS, Zhang X. 2006. Thermosphere density response to the 20–21 November 2003 solar and geomagnetic storm from CHAMP and GRACE accelerometer data. J. Geophys. Res. 111: A06303. https://doi.org/10.1029/2005JA011284. [CrossRef] [Google Scholar]
- Bruinsma S, Thuillier G, Barlier F. 2003. The DTM-2000 empirical thermosphere model with new data assimilation and constraints. J Atmos Sol-Terr Phys 65: 1053–1070. [Google Scholar]
- Bruinsma SL, Sánchez-Ortiz N, Olmedo E, Guijarro N. 2012. Evaluation of the DTM-2009 thermosphere model for benchmarking purposes. J Space Weather Space Clim 2: A04. https://doi.org/10.1051/swsc/2012005. [CrossRef] [Google Scholar]
- Bruinsma SL, Doornbos E, Bowman BR. 2014. Validation of GOCE densities and thermosphere model evaluation. Adv Space Res 54: 576–585. https://doi.org/10.1016/j.asr.2014.04.008. [CrossRef] [Google Scholar]
- Bruinsma SL. 2015. The DTM-2013 thermosphere model. J Space Weather Space Clim 5: A1. https://doi.org/10.1051/swsc/2015001. [Google Scholar]
- Buckeridge S, Scheichl R. 2010. Parallel geometric multigrid for global weather prediction. Numer Linear Algebr Appl 17: 325–342. https://doi.org/10.1002/nla.699. [CrossRef] [Google Scholar]
- Burkholder JB, Sander SP, Abbatt J, Barker JR, Huie RE, et al. 2015. Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation No. 18. JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena. http://jpldataeval.jpl.nasa.gov [Google Scholar]
- Bussy-Virat CD, Ridley AJ, Getchius JW. 2018. Effects of uncertainties in the atmospheric density on the probability of collision between space objects. Space Weather 16: 519–537. https://doi.org/10.1029/2017SW001705. [CrossRef] [Google Scholar]
- Costello KA. 1997. Moving the Rice MSFM into a real-time forecast mode using solar wind driven forecast models, Ph.D. Dissertation, Rice Univ, Houston, Texas. [Google Scholar]
- Curto JJ, Marsal S, Blanch E, Altadill D. 2018. Analysis of the solarflare effects of 6 September 2017 in the ionosphere and in the Earth’s magnetic field using spherical elementary current systems. Space Weather 16: 1709–1720. https://doi.org/10.1029/2018SW001927. [CrossRef] [Google Scholar]
- Cullen MJP. 1993. The unified forecast/climate model. Meteor Mag 122: 81–94. [Google Scholar]
- Davies T, Cullen MJP, Malcolm AJ, Mawson MH, Staniforth A, et al. 2005. A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart J Roy Meterol Soc 131: 1759–1782. [CrossRef] [Google Scholar]
- Davis TN, Sugiura M. 1966. Auroral electrojet activity index AE and its universal time variations. J Geophys Res 71: 785–801. [CrossRef] [Google Scholar]
- Deng Y, Richmond AD, Ridley AJ, Liu H-L. 2008. Assessment of the non-hydrostatic effect on the upper atmosphere using a general circulation model (GCM). Geophys Res Lett 3: L01104. https://doi.org/10.1029/2007GL032182. [Google Scholar]
- Ding C, Peng H. 2005. Minimum redundancy feature selection from microarray gene expression data. J Bioinf Comp Bio 3(02): 185–205. [CrossRef] [Google Scholar]
- Doornbos E. 2011. Thermospheric density and wind determination from satellite dynamics. Ph.D. Dissertation, University of Delft, 188 pp. Available at https://repository.tudelft.nl/. [Google Scholar]
- Drinkwater MR, Floberghagen R, Haagmans R, Muzi M, Popescu A. 2003. GOCE: ESA’s First Earth Explorer Core Mission. Space Sci Rev 108: 419–432. https://doi.org/10.1023/A:1026104216284. [CrossRef] [Google Scholar]
- Edwards J, Slingo A. 1996. Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart J Roy Meterol Soc 122(531): 689–719. [NASA ADS] [CrossRef] [Google Scholar]
- Emmert JT. 2009. A long-term data set of globally averaged thermospheric total mass density. J Geophys Res 114: A06315. https://doi.org/10.1029/2009JA014102. [Google Scholar]
- Fennelly J, Torr D. 1992. Photoionization and photoabsorption cross sections of O, N2, O2, and N for aeronomic calculations. At Data Nucl Data Tables 51(2): 321–363. https://doi.org/10.1016/0092-640X(92)90004-2. [NASA ADS] [CrossRef] [Google Scholar]
- Fomichev VI, Blanchet J-P. 1995. Development of the new CCC/GCM radiation model for extension into the Middle Atmosphere. Atmos Ocean 33: 513–529. [CrossRef] [Google Scholar]
- Fomichev VI, Blanchet J-P, Turner DS. 1998. Matrix parameterization of the 15 μm CO2 band cooling in the middle and upper atmosphere for variable CO2 concentration. J Geophys Res 103: 11505–11528. [CrossRef] [Google Scholar]
- Fomichev V, Ogibalov V, Beagley S. 2004. Solar heating by the near-IR CO2 bands in the mesosphere. Geophys Res Lett 31: L21102. https://doi.org/10.1029/2004GL020324. [CrossRef] [Google Scholar]
- Forbes JM, Marcos FA, Kamalabadi F. 1995. Wave structures in lower thermosphere density from Satellite Electrostatic Accelerometer (SETA) measurements. J Geophys Res Space Phys 100(A8): 14693–14702. [CrossRef] [Google Scholar]
- Friedman JH. 2001. Greedy function approximation: a gradient boosting machine. Ann Stat 29(5): 1189–1232. [Google Scholar]
- Fujiwara H, Miyoshi Y. 2010. Morphological features and variations of temperature in the upper thermosphere simulated by a whole atmosphere GCM. Ann Geophys 28: 427–437. https://doi.org/10.5194/angeo-28-427-2010. [CrossRef] [Google Scholar]
- Fuller-Rowell TJ, Akmaev RA, Wu F, Anghel AF, Maruyama N, et al. 2008. Impact of terrestrial weather on the upper atmosphere. Geophys Res Lett 35: L09808. https://doi.org/10.1029/2007GL032911. [Google Scholar]
- Goncharenko L, Coster AJ, Chau J, Valladares C. 2010. Impact of sudden stratospheric warmings on equatorial ionization anomaly. J Geophys Res Space Phys 115: A00G07. https://doi.org/10.1029/2010JA015400. [CrossRef] [Google Scholar]
- Griffin DJ. 2018. The extension of a non-hydrostatic dynamical core into the thermosphere, Ph.D. thesis, The University of Exeter. [Google Scholar]
- Griffin DJ, Thuburn J. 2018. Numerical effects on vertical wave propagation in deep-atmosphere models. Quart J Roy Meterol Soc 144: 567–580. https://doi.org/10.1002/qj.3229. [CrossRef] [Google Scholar]
- Griffith MJ, Jackson DR, Griffin DJ, Budd CJ. 2020. Stable extension of the Unified Model into the mesosphere and lower thermosphere. J Space Weather Space Clim, this issue. https://doi.org/10.1051/swsc/2020018. [Google Scholar]
- Henke B, Gullikson E, Davis J. 1993. X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50–30,000 eV, Z = 1–92. At Data Nucl Data Tables 54(2): 181–342. https://doi.org/10.1006/adnd.1993.1013. [Google Scholar]
- Hejduk MD, Snow DE. 2018. The effect of neutral density estimation errors on satellite conjunction serious event rates. Space Weather 16: 849–869. https://doi.org/10.1029/2017SW001720. [CrossRef] [Google Scholar]
- Ho TK. 1995. Random decision forests. In: Proceedings of 3rd International Conference on Document Analysis and Recognition 1: 278–282. [Google Scholar]
- Jackson DR, Fuller-Rowell TJ, Griffin DJ, Griffith DJ, Kelly CW, et al. 2019. Future directions for whole atmosphere modelling: Developments in the context of space weather. Space Weather 17: 1342–1350. https://doi.org/10.1029/2019SW002267. [CrossRef] [Google Scholar]
- Knipp DJ, Pette DJ, Kilcommons DV, Isaacs LM, Cruz TL, et al. 2017. Thermospheric nitric oxide response to shock-led storms. Space Weather 15: 325–342. https://doi.org/10.1002/2016SW001567. [CrossRef] [Google Scholar]
- Krauss S, Temmer M, Veronig A, Baur O, Lammer H. 2015. Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results. J Geophys Res 120: 8848–8860. https://doi.org/10.1002/2015JA021702. [Google Scholar]
- Krauss S, Temmer M, Vennerstrom S. 2018. Multiple satellite analysis of the Earth’s thermosphere and interplanetary magnetic field variations due to ICME/CIR events during 2003–2015. J Geophys Res 123: https://doi.org/10.1029/2018JA025778. [Google Scholar]
- Lacoursire J, Meyer SA, Faris GW, Slanger TG, Lewis BR, et al. 1999. The O(1D) yield from O2 photodissociation near H Lyman- (121.6 nm). J Chem Phys 110(4): 1949–1958. https://doi.org/10.1063/1.477852. [CrossRef] [Google Scholar]
- Larsen MF, Meriwether JW. 2012. Vertical winds in the thermosphere. J Geophys Res 117: A09319. https://doi.org/10.1029/2012JA017843. [CrossRef] [Google Scholar]
- Lines S, Manners J, Mayne NJ, Goyal J, Carter AL, et al. 2018. Exonephology: transmission spectra from a 3D simulated cloudy atmosphere of HD 209458b. Mon Not R Astron Soc 481: 194–205. https://doi.org/10.1093/mnras/sty2275. [CrossRef] [Google Scholar]
- Liu H-L, Bardeen CG, Foster BT, Lauritzen P, Liu J, et al. 2018. Development and validation of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM-X 2.0). J Adv Model Earth Sys 10: 381–402. https://doi.org/10.1002/2017MS001232. [CrossRef] [Google Scholar]
- Liu H-L, Foster BT, Hagan ME, McInerney JM, Maute A, Qian L, et al. 2010. Thermosphere extension of the Whole Atmosphere Community Climate Model. J Geophys Res Space Phys 115: A12302. https://doi.org/10.1029/2010JA015586. [Google Scholar]
- Liu H-L, Yudin VA, Roble RG. 2013. Day-to-day ionospheric variability due to lower atmosphere perturbations. Geophys Res Lett 40: 665–670. https://doi.org/10.1002/grl.50125.. [CrossRef] [Google Scholar]
- Manners J, Edwards JM, Hill P, Thelen J-C. 2018. SOCRATES (Suite Of Community Radiative Transfer codes based on Edwards and Slingo) Technical Guide. Met Office, UK. Last access: 29th June 2018. https://code.metoffice.gov.uk/trac/socrates (requires account, available on request from Scientific_Partnerships@metoffice.gov.uk) [Google Scholar]
- Marsh DR, Garcia RR, Kinnison DE, Boville BA, Sassi F, et al. 2007. Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing. J Geophys Res 112: D23306. https://doi.org/10.1029/2006JD008306. [CrossRef] [Google Scholar]
- Matzka J, Stolle C, Kervalishvili G, Rauberg J, Yamazaki Y. 2019. The Hp geomagnetic index test dataset 2003, 2004, 2005 and 2017. GFZ Data Services. https://doi.org/10.5880/GFZ.2.3.2019.002. [Google Scholar]
- Mayaud PN. 1980. Derivation, meaning and use of geomagnetic indices. Geophysical Monograph 22. Am. Geophys. Union, Washington D.C. [Google Scholar]
- McConaghy T. 2011. FFX: Fast, Scalable, Deterministic Symbolic Regression Technology. In: Genetic Programming Theory and Practice IX. Genetic and Evolutionary Computation. Riolo R, Vladislavleva E, Moore J (Eds.). Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1770-5_13. [Google Scholar]
- Melvin T, Dubal M, Wood N, Staniforth A, Zerroukat M. 2010. An inherently mass-conserving iterative semi-implicit semi-Lagrangian discretization of the non-hydrostatic vertical-slice equations. Quart J Roy Meterol Soc 136: 799–814. https://doi.org/10.1002/qj.603. [Google Scholar]
- Menvielle M, Berthelier A. 1991. The K-derived planetary indices: description and availability. Rev Geophys 29: 415–432. [CrossRef] [Google Scholar]
- Menvielle M, Papitashvili N, Hakkinen L, Sucksdorff C. 1995. Computer production of K indices: review and comparison of methods. Geophys J Int 123: 866–886. [CrossRef] [Google Scholar]
- Morgenstern O, Braesicke P, O’Connor FM, Bushell AC, Johnson CE, et al. 2009. Evaluation of the new UKCA climate-composition model – Part 1: The stratosphere. Geosci Model Dev 2: 43–57. [CrossRef] [Google Scholar]
- Muelhaupt TJ, Sorge ME, Morin J, Wilson RS. 2019. Space traffic management in the new space era. J Space Safety Eng 6: 80–87. https://doi.org/10.1016/j.jsse.2019.05.007 [CrossRef] [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. 2016. Achieving Science with CubeSats: Thinking Inside the Box. The National Academies Press, Washington, DC. https://doi.org/10.17226/23503. [Google Scholar]
- Nosé M, Iyemori T, Wang L, Hitchman A, Matzka J, et al. 2012. Wp index: A new substorm index derived from high-resolution geomagnetic field data at low latitude. Space Weather 10: S08002. https://doi.org/10.1029/2012SW000785. [Google Scholar]
- Oliveira DM, Zesta E, Schuck PW, Sutton E. 2017. Thermospheric global time response to geomagnetic storms caused by coronal mass ejections. J Geophys Res 122: 10762–10782. https://doi.org/10.1102/2017JA024006. [CrossRef] [Google Scholar]
- Paxton LJ, et al. 2004. GUVI: A hyperspectral imager for geospace. Proc SPIE 5660: 227–240. https://doi.org/10.1117/12/579171. [Google Scholar]
- Pedatella NM, Raeder K, Anderson JL, Liu H-L. 2013. Application of data assimilation in the Whole Atmosphere Community Climate Model to the study of day-to-day variability in the middle and upper atmosphere. Geophys Res Lett 40: 4469–4474. https://doi.org/10.1002/grl.50884. [CrossRef] [Google Scholar]
- Peng LFH, Ding C. 2005. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8): 1226–1238. https://doi.org/10.1109/TPAMI.2005.159. [CrossRef] [PubMed] [Google Scholar]
- Picone JM, Hedin AE, Drob DP, Aikin AC. 2002. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J Geophys Res Space Phys 107(A12): 1468. https://doi.org/10.1029/2002JA009430. [Google Scholar]
- Poore AB (Ed.) 2016. Covariance and uncertainty realism in space surveillance and tracking. Report of the Air Force Space Command Astrodynamics Innovation Committee, June 27. [Google Scholar]
- Qian L, Burns AG, Solomon SC, Wang W. 2013. Annual/semiannual variation of the ionosphere. Geophys Res Lett 40: 1928–1933. https://doi.org/10.1002/grl.50448. [CrossRef] [Google Scholar]
- Qian L, Solomon SC. 2012. Thermospheric density: An overview of temporal and spatial variations. Space Sci Rev 168: 147–173. https://doi.org/10.1007/s11214-011-9810-z [CrossRef] [Google Scholar]
- Reigber C, Bock R, Förste C, Grunwaldt L, Jakowski N, Lühr H, Schwintzer P, Tilgner P. 1996. CHAMP Phase B Executive Summary, Scientific Technical Report STR96/13, GeoForschungsZentrum, Potsdam, Germany. https://doi.org/10.2312/GFZ.b103-96131. [Google Scholar]
- Siebert M, Meyer J. 1996. Geomagnetic activity indices. In: The Upper Atmosphere. Dieminger W, Hartmann GK, Leitinger R, (Eds.) Springer, Berlin, Heidelberg. pp. 887–911. https://doi.org/10.1007/978-3-642-78717-1_26 [Google Scholar]
- Shprits Y, Vasile R, Zhelayskaya IS. 2019. Nowcasting and predicting the Kp index using historical values and real-time observations. Space Weather 17: 1219–1229. https://doi.org/10.1029/2018SW002141. [CrossRef] [Google Scholar]
- Solomon SC, Qian L. 2005. Solar extreme-ultraviolet irradiance for general circulation models. J Geophys Res Space Phys 110(A10): https://doi.org/10.1029/2005JA011160. [Google Scholar]
- Storz MF, Bowman BR, Branson MJI, et al. 2005. High accuracy satellite drag model (HASDM). Adv Space Res 36: 2497–2505. https://doi.org/10.1016/j.asr.2004.02.020. [CrossRef] [Google Scholar]
- Sucksdorff C, Pirjola R, Häkkinen L. 1991. Computer production of K-indices based on linear elimination. Geophys Trans 36: 333–345. [Google Scholar]
- Sugiura M, Hendricks S. 1967. Provisional hourly values of equatorial Dst for 1961, 1962 and 1963. NASA Tech. Note D-4047. [Google Scholar]
- Sutton EK, Forbes JM, Nerem RS. 2005. Global thermospheric neutral density and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer data. J Geophys Res 110: A09S40. https://doi.org/10.1029/2004JA010985. [CrossRef] [Google Scholar]
- Swinbank R, Ortland D. 2003. Compilation of wind data for the Upper Atmosphere Research Satellite (UARS) reference atmosphere project. J Geophys Res Atmos 108: D19. https://doi.org/10.1029/2002JD003135. [CrossRef] [Google Scholar]
- Tan Y, Hu Q, Wang Z, Zhong Q. 2018. Geomagnetic index Kp Forecasting with LSTM. Space Weather 16: 406–416. https://doi.org/10.1002/2017SW001764. [CrossRef] [Google Scholar]
- Tapley BD, Bettadpur S, Watkins M, Reigber C. 2004. The gravity recovery and climate experiment: Mission overview and early results. Geophys Res Lett 31: L09607. https://doi.org/10.1029/2004GL019920. [CrossRef] [Google Scholar]
- Telford PJ, Braesicke P, Morgenstern O, Pyle JA. 2008. Technical Note: Description and assessment of a nudged version of the new dynamics Unified Model. Atmos Chem Phys 8: 1701–1712. https://doi.org/10.5194/acp-8-1701-2008. [CrossRef] [Google Scholar]
- Telford PJ, Abraham NL, Archibald AT, Braesicke P, Dalvi M, et al. 2013. Implementation of the Fast-JX Photolysis scheme (v6.4) into the UKCA component of the MetUM chemistry-climate model (v7.3). Geosci Model Dev 6(1): 161–177. https://doi.org/10.5194/gmd-6-161-2013. [CrossRef] [Google Scholar]
- T. Dudok de Wit, S. Bruinsma, K. Shibasaki. 2014. Synoptic radio observations as proxies for upper atmosphere modelling. J Space Weather Space Clim 4: A06. https://doi.org/10.1051/swsc/2014003. [Google Scholar]
- Tomita S, Nosé M, Iyemori T, Toh H, Takeda M, et al. 2011. Magnetic local time dependence of geomagnetic disturbances contributing to the AU and AL indices. Ann Geophys 29: 673–678. https://doi.org/10.5194/angeo-29-673-2011. [CrossRef] [Google Scholar]
- Troshichev OA, Andrezen VG, Vennerstrøm S, Friis-Christensen E. 1988. Magnetic activity in the polar cap – A new index. Planet Space Sci 36: 1095. https://doi.org/10.1016/0032-0633(88)90063-3. [CrossRef] [Google Scholar]
- Troshichev O, Janzhura A, Stauning P. 2006. Unified PCN and PCS indices: Method of calculation, physical sense and dependence on the IMF azimuthal and northward components. J Geophys Res 11: A05208. https://doi.org/10.1029/2005JA011402. [Google Scholar]
- Ullrich PA, Jablonowski C, Kent J, Lauritzen PH, Nair R, et al. 2017. DCMIP2016: A review of non-hydrostatic dynamical core design and intercomparison of participating models. Geosci Model Dev 10: 4477–4509. https://doi.org/10.5194/gmd-10-4477-2017. [CrossRef] [Google Scholar]
- Vallado DA, Finkleman D. 2014. A critical assessment of satellite drag and atmospheric density modeling. Acta Astron 95: 141–165. [CrossRef] [Google Scholar]
- Van den IJssel J, Doornbos E, Iorfida E, March G, Siemes C, Montenbruck O. 2019. Thermosphere densities derived from Swarm GPS observations. Adv Space Res 65: 1758–1771. https://doi.org/10.1016/j.asr.2020.01.004. [CrossRef] [Google Scholar]
- Visser PNAM, van den IJssel JAA. 2016. Orbit determination and estimation of non-gravitational accelerations for the GOCE reentry phase. Adv Space Res 58: 1840–1853. https://doi.org/10.1016/j.asr.2016.07.013. [CrossRef] [Google Scholar]
- Walters D, Baran AJ, Boutle I, Brooks M, Earnshaw P, et al. 2019. The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geosci Model Dev 12(5): 1909–1963. https://doi.org/10.5194/gmd-12-1909-2019. [CrossRef] [Google Scholar]
- Warner C, McIntyre M. 2001. An ultrasimple spectral parameterization for nonorographic gravity waves. J Atmos Sci 58(14): 1837–1857. [CrossRef] [Google Scholar]
- Wild O, Zhu Z, Prather MJ. 2000. Fast-J: Accurate simulation of in- and below-cloud photolysis in Tropospheric Chemical Models. J Atmos Chem 37(3): 245–282. https://doi.org/10.1023/A:1006415919030. [CrossRef] [Google Scholar]
- Wing S, Johnson JR, Jen J, Meng C-I, Sibeck DG, et al. 2005. Kp Forecast Models. J Geophys Res 110: A04203. https://doi.org/10.1029/2004JA010500. [Google Scholar]
- Wintoft P, Wik M, Matzka J, Shprit Y. 2017. Forecasting Kp from solar wind data: input parameter study using 3-hour averages and 3-hour range values. J Space Weather Space Clim 7: A29. https://doi.org/10.1051/swsc/2017027. [CrossRef] [Google Scholar]
- Wood N, Staniforth A, White A, Allen T, Diamantakis M, et al. 2014. An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Quart J Roy Meterol Soc 140: 1505–1520. https://doi.org/10.1002/qj.2235. [CrossRef] [Google Scholar]
- Zhelavskaya IS, Vasile R, Shprits YY, Stolle C, Matzka J. 2019. Systematic analysis of machine learning and feature selection techniques for prediction of the Kp Index. Space Weather 17: https://doi.org/10.1029/2019SW002271. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.