Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
Topical Issue - Geomagnetic Storms and Substorms: a Geomagnetically Induced Current perspective
|
|
---|---|---|
Article Number | 26 | |
Number of page(s) | 31 | |
DOI | https://doi.org/10.1051/swsc/2020025 | |
Published online | 03 July 2020 |
- BaileyRL, HalbedlTS, SchattauerI, RömerA, AchleitnerG, BegganCD, WesztergomV, EgliR, LeonhardtR. 2017. Modelling geomagnetically induced currents in midlatitude Central Europe using a thin-sheet approach. Ann Geophys 35(3): 751–761. https://doi.org/10.5194/angeo-35-751-2017. [CrossRef] [Google Scholar]
- BalanN, BatistaIS, Tulasi RamS, RajeshPK. 2016. A new parameter of geomagnetic storms for the severity of space weather. Geosci Lett 3: 3. https://doi.org/10.1186/s40562-016-0036-5. [CrossRef] [Google Scholar]
- BalanN, SkougR, Tulasi RamS, RajeshPK, ShiokawaK, OtsukaY, BatistaIS, EbiharaY, NakamuraT. 2014. CME front and severe space weather. J Geophys Res Space Phys 119: 10041–10058. https://doi.org/10.1002/2014JA020151. [Google Scholar]
- BotelerDH. 2019. A 21st century view of the March 1989 magnetic storm. Space Weather 17: 1427–1441. https://doi.org/10.1029/2019SW002278. [CrossRef] [Google Scholar]
- CarterBA, YizengawE, PradiptaR, HalfordAJ, NormanR, ZhangK. 2015. Interplanetary shocks and the resulting geomagnetically induced currents at the equator. Geophys Res Lett 42: 6554–6559. https://doi.org/10.1002/2015GL065060. [CrossRef] [Google Scholar]
- ChapmanSC, BartelsJ. 1940. Geomagnetism, Vol. I: Geomagnetic and Related Phenomena, Oxford University Press, London, UK. [Google Scholar]
- ChreeC. 1913. Some phenomena of sunspots and of terrestrial magnetism at Kew observatory. Philos Trans R Soc London Ser A 212: 75–116. https://doi.org/10.1098/rsta.1913.0003. [CrossRef] [Google Scholar]
- DungeyJW. 1961. Interplanetary magnetic field and the auroral zones. Phys Rev Lett 6: 47–48. https://doi.org/10.1103/PhysRevLett.6.47. [Google Scholar]
- GanushkinaNY, JaynesA, LiemohnMW. 2017. Space weather effects produced by the ring current particles. Space Sci Rev 212: 1315–1344. https://doi.org/10.1007/s11214-017-0412-2. [CrossRef] [Google Scholar]
- GauntC, CoetzeeG. 2007. Transformer failures in regions incorrectly considered to have low GIC risk. Proceedings from IEEE Lausanne PowerTech, pp. 807–812. https://doi.org/10.1109/PCT.2007.4538419. [Google Scholar]
- GauntCT. 2014. Reducing uncertainty – responses for electricity utilities to severe solar storms. J Space Weather Space Clim 4: A01. https://doi.org/10.1051/swsc/2013058. [CrossRef] [Google Scholar]
- GilA, ModzelewskaR, MoskwaS, SiluszykA, SiluszykM, WawrzynczakA, ZakrzewskaS. 2019. Does time series analysis confirms the relationship between space weather effects and the failures of elec- trical grids in South Poland?J Math Indus 9(1): 7. https://doi.org/10.1186/s13362-019-0064-9. [CrossRef] [Google Scholar]
- GonzalezWD, JoselynJA, KamideY, KroehlHW, RostokerG, TsurutaniBT, VasyliunasVM. 1994. What is a geomagnetic storm?J. Geophys. Res. 99: 5771–5792. https://doi.org/10.1029/93JA02867. [Google Scholar]
- KamideY, KokobunS. 1996. Two-component auroral electrojet: Importance for substorm studies. Journal of Geophysical Research 101(A6): 13027–13046. https://doi.org/10.1029/96JA00142. [CrossRef] [Google Scholar]
- KamideY, RostokerG. 2004. What is the physical meaning of the AE index?Eos, Trans Am Geophys Union 85(19): 188–192. https://doi.org/10.1029/2004EO190010. [CrossRef] [Google Scholar]
- KappenmanJG. 2003. Storm sudden commencement events and the associated geomagnetically induced current risks to ground-based systems at low-latitude and mid-latitude locations. Space Weather 1(3): 1016. https://doi.org/10.1029/2003SW000009. [Google Scholar]
- KappenmanJG. 2005. An overview of the impulsive geomagnetic field disturbances and power grid impacts associated with the violent Sun-Earth connection events of 29–31 October 2003 and a comparative evaluation with other contemporary storms. Space Weather 3: S08C01. https://doi.org/10.1029/2004SW000128. [Google Scholar]
- KappenmanJG. 2007. Geomagnetic disturbances and impacts upon power system operation, 16.1–16.22. CRC Press/IEEE Press. https://doi.org/10.1201/9781420009255.ch16. [Google Scholar]
- KataokaR, PulkkinenA. 2008. Geomagnetically induced currents during intense storms driven by coronal mass ejections and corotating interacting regions. J Geophys Res Space Phys 113(A3): A03S12. https://doi.org/10.1029/2007JA012487. [Google Scholar]
- KepkoL, McPherronRL, AmmO, ApatenkovS, BaumjohannW, BirnJ, LesterM, NakamuraR, PulkkinenTI, SergeevV. 2014. Substorm current wedge revisited. Space Sci Rev 190: 1–46. https://doi.org/10.1007/s11214-014-0124-9. [CrossRef] [Google Scholar]
- KikuchiT, TsunomuraS, HashimotoS, NozakiK. 2001. Field-aligned current effects on midlatitude geomagnetic sudden commencements. J Geophys Res 106(A8): 15555–15566. https://doi.org/10.1029/2001JA900030. [CrossRef] [Google Scholar]
- LakhinaGS, TsurutaniBT. 2016. Geomagnetic storms: historical perspective to modern view. Geosci Lett 3(1): 5. https://doi.org/10.1186/s40562-016-0037-4. [NASA ADS] [CrossRef] [Google Scholar]
- LockwoodM, BentleySN, OwensMJ, BarnardLA, ScottCJ, WattCE, AllansonO. 2019. The development of a space climatology: 1. Solar wind magnetosphere coupling as a function of timescale and the effect of data gaps. Space Weather 17: 133–156. https://doi.org/10.1029/2018SW001856. [Google Scholar]
- LotzSI, DanskinDW. 2017. Extreme value analysis of induced geoelectric field in South Africa. Space Weather 15: 1347–1356. https://doi.org/10.1002/2017SW001662. [CrossRef] [Google Scholar]
- MarshallRA, DalzellM, WatersCL, GoldthorpeP, SmithEA. 2012. Geomagnetically induced currents in the New Zealand power network. Space Weather 10(S08): 003. https://doi.org/10.1029/2012SW000806. [Google Scholar]
- MayaudPN. 1980. Derivation, meaning, and use of geomagnetic indices. Washington DC American Geophysical Union Geophysical Monograph Series 22: 607. https://doi.org/10.1029/GM022. [Google Scholar]
- McPherronRL, ChuX. 2017. The mid-latitude positive bay and the MPB index of substorm activity. Space Sci Rev 206: 91–122. https://doi.org/10.1007/s11214-016-0316-6. [CrossRef] [Google Scholar]
- MolinskiTS. 2002. Why utilities respect geomagnetically induced currents. J Atmos Sol-Terr Phys 64: 1765–1778. https://doi.org/10.1016/S1364-6826(02)00126-8. [CrossRef] [Google Scholar]
- MourenasD, ArtemyevAV, ZhangX-J. 2018. Statistics of extreme time-integrated geomagnetic activity. Geophys Res Lett 45: 502–510. https://doi.org/10.1002/2017GL076828. [CrossRef] [Google Scholar]
- MourenasD, ArtemyevAV, ZhangX-J. 2019. Impact of significant time-integrated geomagnetic activity on 2-MeV electron flux. J Geophys Res Space Phys 124: 4445–4461. https://doi.org/10.1029/2019JA026659. [CrossRef] [Google Scholar]
- MourenasD, ArtemyevAV, ZhangX-J. 2020. Dynamical properties of peak and time-integrated geomagnetic events inferred from sample entropy. J Geophys Res Space Phys 125(e27): 599. https://doi.org/10.1029/2019JA027599. [Google Scholar]
- PirjolaR. 2000. Geomagnetically induced currents during magnetic storms. IEEE Trans Plasma Sci 28(6): 1867–1873. https://doi.org/10.1109/27.902215. [CrossRef] [Google Scholar]
- PokhrelS, NguyenB, RodriguezM, BernabeuE, SimpsonJJ. 2018. A finite difference time domain investigation of electric field enhancements along ocean-continent boundaries during space weather events. J Geophys Res Space Phys 123(6): 5033–5046. https://doi.org/10.1029/2017JA024648. [CrossRef] [Google Scholar]
- PulkkinenA, BernabeuE, ThomsonA, ViljanenA, PirjolaR, et al. 2017. Geomagnetically induced currents: Science, engineering, and applications readiness. Space Weather 15(7): 828–856. https://doi.org/10.1002/2016SW001501. [CrossRef] [Google Scholar]
- SchrijverCJ, DobbinsR, MurtaghW, PetrinecSM. 2014. Assessing the impact of space weather on the electric power grid based on insurance claims for industrial electrical equipment. Space Weather 12(7): 487–498. https://doi.org/10.1002/2014SW001066. [CrossRef] [Google Scholar]
- SchrijverCJ, MitchellSD. 2013. Disturbances in the US electric grid associated with geomagnetic activity. J Space Weather Space Clim 3: A19. https://doi.org/10.1051/swsc/2013041. [CrossRef] [Google Scholar]
- ThomsenMF. 2004. Why Kp is such a good measure of magnetospheric convection. Space Weather 2(S11): 004. https://doi.org/10.1029/2004SW000089. [Google Scholar]
- TortaJM, SerranoL, ReguéJR, SánchezAM, RoldánE. 2012. Geomagnetically induced currents in a power grid of northeastern Spain. Space Weather 10: S06002. https://doi.org/10.1029/2012SW000793. [Google Scholar]
- TozziR, De MichaelisP, CocoI, GiannattasioF. 2019. A Preliminary Risk Assessment of Geomagnetically Induced Currents over the Italian Territory. Space Weather 17: 46–58. https://doi.org/10.1029/2018SW002065. [CrossRef] [Google Scholar]
- TsurutaniBT, GonzalezWD, GonzalezALC, GuarnieriFL, GopalswamyN, et al. 2006. Corotating solar wind streams and recurrent geomagnetic activity: A review. J Geophys Res 111: A07S01. https://doi.org/10.1029/2005JA011273. [Google Scholar]
- TsurutaniBT, GonzalezWD, GuarnieriF, KamideY, ZhouX, ArballoJK. 2004. Are high- intensity long-duration continuous AE activity (HILDCAA) events substorm expansion events?J Atmos Sol-Terr Phys 66(2): 167–176. https://doi.org/10.1016/j.jastp.2003.08.015. [NASA ADS] [CrossRef] [Google Scholar]
- TsurutaniBT, VerkhoglyadovaOP, MannucciAJ, LakhinaGS, LiG, ZankGP. 2009. A brief review of “solar flare effects” on the ionosphere. Radio Sci 44(A5): RS0A17. https://doi.org/10.1029/2008RS004029. [Google Scholar]
- TurnbullKL, WildJA, HonaryF, ThomsonAWP, McKayAJ. 2009. Characteristics of variations in the ground magnetic field during substorms at mid latitudes. Ann Geophys 27: 3421–3428. https://doi.org/10.5194/angeo-27-3421-2009. [CrossRef] [Google Scholar]
- VerscharenD, KleinKG, MarucaBA. 2019. The multi-scale nature of the solar wind. Living Rev Sol Phys 16(1): 5. https://doi.org/10.1007/s41116-019-0021-0. [CrossRef] [Google Scholar]
- ViljanenA, PirjolaR, PracserE, KatkalovJ, WikM. 2014. Geomagnetically induced currents in Europe – Modelled occurrence in a continent-wide power grid. J Space Weather Space Clim 4: A09. https://doi.org/10.1051/swsc/2014006. [CrossRef] [Google Scholar]
- ViljanenA, TanskanenE, PulkkinenA. 2006. Relation between substorm characteristics and rapid temporal variations of the ground magnetic field. Ann Geophys 24: 725–733. https://doi.org/10.5194/angeo-24-725-2006. [CrossRef] [Google Scholar]
- Výbošt’okováT, ŠvandaM. 2019. Statistical analysis of the correlation between anomalies in the Czech electric power grid and geomagnetic activity. Space Weather 17: 1208–1218. https://doi.org/10.1029/2019SW002181. [CrossRef] [Google Scholar]
- WangK-R, LiuL-G, LiY. 2015. Preliminary analysis on the interplanetary cause of geomagnetically induced current and its effect on power systems. Chinese Astron Astrophys 39: 78–88. https://doi.org/10.1016/j.chinastron.2015.01.003. [CrossRef] [Google Scholar]
- WatariS, KunitakeM, KitamuraK, HoriT, KikuchiT, et al. 2009. Measurements of geomagnetically induced current in a power grid in Hokkaido, Japan. Space Weather 7: 03002. https://doi.org/10.1029/2008SW000417. [Google Scholar]
- ZhangJJ, WangC, SunT, LiuYD. 2016. Risk assessment of the extreme interplanetary shock of 23 July 2012 on low-latitude power networks. Space Weather 14: 259–270. https://doi.org/10.1002/2015SW001347. [NASA ADS] [CrossRef] [Google Scholar]
- ZoisIP. 2013. Solar activity and transformer failures in the Greek national electric grid. J Space Weather Space Clim 3: A32. https://doi.org/10.1051/swsc/2013055. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.