Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
Topical Issue - Space Weather research in the Digital Age and across the full data lifecycle
|
|
---|---|---|
Article Number | 25 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/swsc/2020026 | |
Published online | 29 June 2020 |
- Ahn BH, Akasofu SI, Kamide Y. 1983. The Joule heat-production rate and the particle energy injection rate as a function of the geomagnetic indices AE and AL. J Geophys Res 88: 6275. https://doi.org/10.1029/JA088iA08p06275. [CrossRef] [Google Scholar]
- Alberti T, Consolini G, Lepreti F, Laurenza M, Vecchio A, Carbone V. 2017. Timescale separation in the solar wind-magnetosphere coupling during St. Patrick’s Day storms in 2013 and 2015. J Geophys Res 122: 4266. https://doi.org/10.1002/2016JA023175. [CrossRef] [Google Scholar]
- Alberti T, Consolini G, De Michelis P, Laurenza M, Marcucci MF. 2018. On fast and slow Earth’s magnetospheric dynamics during geomagnetic storms: A stochastic Langevin approach. J Space Weath Space Clim 8: A56. https://doi.org/10.1051/swsc/2018039. [CrossRef] [Google Scholar]
- Alberti T, Consolini G, Carbone V, Yordanova E, Marcucci MF, De Michelis P. 2019. Multifractal and chaotic properties of solar wind at MHD and kinetic domains: An empirical mode decomposition approach. Entropy 21: 320. https://doi.org/10.3390/e21030320. [CrossRef] [Google Scholar]
- Baker DN, Klimas AJ, Vassiliadis DV. 1995. Energy transfer between the solar wind and the magnetosphere-ionosphere system. J Geomag Geoelectr 47: 1171–1182. https://doi.org/10.5636/jgg.47.1171. [CrossRef] [Google Scholar]
- Bruno R, Carbone V, Sorriso Valvo L, Bavassano B. 2003. Radial evolution of solar wind intermittency in the inner heliosphere. J Geophys Res 108: 1130. https://doi.org/10.1029/2002JA009615. [CrossRef] [Google Scholar]
- Camporeale E. 2019. The challenge of machine learning in Space Weather: Nowcasting and forecasting. Space Weather 17: 1166–1207. https://doi.org/10.1029/2018SW002061. [CrossRef] [Google Scholar]
- Camporeale E, Wing S, Johnson J. 2018. Machine learning techniques for space weather, Elsevier, Amsterdam. [Google Scholar]
- Carbone F, Sorriso-Valvo L, Alberti T, Lepreti F, Chen CHK, Nemecek Z, Safránková J. 2018. Arbitrary-order Hilbert spectral analysis and intermittency in solar wind density fluctuations. Astrophys J 859: 27. https://doi.org/10.3847/1538-4357/aabcc2. [CrossRef] [Google Scholar]
- Chang T, Tam SWY, Wu C-C, Consolini G. 2003. Complexity, forced and/of self-organized criticality and topological phase transitions in space plasmas. Space Sci Rev 107: 425–445. https://doi.org/10.1023/A:1025502023494. [CrossRef] [Google Scholar]
- Consolini G. 2002. Self-organized criticality: A new paradigm for the magnetotail dynamics. Fractals 10: 275. https://doi.org/10.1142/S0218348X02001397. [CrossRef] [Google Scholar]
- Consolini G. 2018. Emergence of dynamical complexity in the Earth’s magnetosphere. In: Machine learning techniques for space weather, Camporeale E, Wing S, Johnson J (Eds.), Elsevier, Amsterdam, The Netherlands, pp. 177–202. [CrossRef] [Google Scholar]
- Consolini G, De Michelis P. 2005. Local intermittency measure analysis of AE index: The directly driven and unloading component. Geophys Res Lett 32: L05101. https://doi.org/10.1029/2004GL022063. [CrossRef] [Google Scholar]
- Consolini G, Marcucci MF, Candidi M. 1996. Multifractal structure of auroral electrojet index data. Phys Rev Lett 76: 4082–4085. https://doi.org/10.1103/PhysRevLett.76.4082. [CrossRef] [Google Scholar]
- Consolini G, Alberti T, Yordanova E, Marcucci MF, Echim M. 2017. A Hilbert-Huang transform approach to space plasma turbulence at kinetic scales. J Phys Conf Ser 900: 012003. https://doi.org/10.1088/1742-6596/900/1/012003. [CrossRef] [Google Scholar]
- Consolini G, Alberti T, De Michelis P. 2018. On the forecast horizon of magnetospheric dynamics: A scale-to-scale approach. J Geophys Res 123: 9065–9077. https://doi.org/10.1029/2018JA025952. [CrossRef] [Google Scholar]
- Corso G, Prado TDL, Lima GZDS, Kurths J, Lopes SR. 2018. Quantifying entropy using recurrence matrix microstates. Chaos 28: 083108. https://doi.org/10.1063/1.5042026. [CrossRef] [Google Scholar]
- Daglis LA, Livi S, Sarris ET, Wilken B. 1994. Energy density of ionospheric and solar wind origin ions in the near-Earth magnetotail during substorms. J Geophys Res 99: 5691–5703. https://doi.org/10.1029/93JA02772. [CrossRef] [Google Scholar]
- Davis TN, Sugiura M. 1966. Auroral electroject activity index AE and its universal time variations. J Geophys Res 71: 785. https://doi.org/10.1029/JZ071i003p00785. [CrossRef] [Google Scholar]
- De Michelis P, Consolini G, Tozzi R. 2012. On the multi-scale nature of large geomagnetic storms: An empirical mode decomposition analysis. Nonlinear Process Geophys 19: 667–673. https://doi.org/10.5194/npg-19-667-2012. [NASA ADS] [CrossRef] [Google Scholar]
- Donges JF, Heitzig J, Beronov B, Wiedermann M, Runge J, Feng QY, Tupikina L, Stolbova V, Donner RV, Marwan N, Dijkstra HA, Kurths J. 2015. Unified functional network and nonlinear time series analysis for complex systems science – the pyunicorn package. Chaos 25: 113101. https://doi.org/10.1063/1.4934554. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Donner RV, Zou Y, Donges JF, Marwan N, Kurths J. 2010. Recurrence networks a novel paradigm for nonlinear time series. New J Phys 12(3): 033025. https://doi.org/10.1088/1367-2630/12/3/033025. [CrossRef] [Google Scholar]
- Donner RV, Heitzig J, Donges JF, Zou Y, Marwan N, Kurths J. 2011. The geometry of chaotic dynamics: A complex network perspective. Eur Phys J B 84: 653–672. https://doi.org/10.1140/epjb/e2011-10899-1. [CrossRef] [EDP Sciences] [Google Scholar]
- Donner RV, Donges JF, Zou Y, Feldhoff JH. 2015. Complex network analysis of recurrences. In: Recurrence quantification analysis: Theory and best practice, Webber E Jr, Marwan N (Eds.), Springer International Publishing, pp. 101–163. [CrossRef] [Google Scholar]
- Donner RV, Stolbova V, Balasis G, Donges JF, Georgiou M, Potirakis SM, Kurths J. 2018. Temporal organization of magnetospheric fluctuations unveiled by recurrent patterns in the Dst index. Chaos 28: 085716. https://doi.org/10.1063/1.5024792. [CrossRef] [Google Scholar]
- Donner RV, Balasis G, Stolbova V, Georgiou M, Wiedermann M, Kurths J. 2019. Recurrence based quantification of dynamical complexity in the Earth’s magnetosphere at geospace storm timescales. J Geophys Res 124: 90–108. https://doi.org/10.1029/2018JA025318. [CrossRef] [Google Scholar]
- Eckmann JP, Kamphorst SO, Ruelle D. 1987. Recurrence plots of dynamical systems. Europhys Lett 4: 973–977. https://doi.org/10.1209/0295-5075/4/9/004. [Google Scholar]
- Eroglu D, Peron TKD, Marwan N, Rodrigues FA, Costa LdF, Sebe M, Kiss IZ, Kurths J. 2014. Entropy of weighted recurrence plots. Phys Rev E 90: 042919. https://doi.org/10.1103/PhysRevE.90.042919. [CrossRef] [Google Scholar]
- Huang NE, Wu Z. 2008. A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev Geophys 46: RG2006. https://doi.org/10.1029/2007RG000228. [Google Scholar]
- Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Royal Soc Lond Proc Ser A 454: 903–955. https://doi.org/10.1098/rspa.1998.0193. [CrossRef] [Google Scholar]
- Huang NE, Shen Z, Long RS. 1999. A new view of nonlinear water waves – the Hilbert spectrum. Ann Rev Fluid Mech 31: 417–457. https://doi.org/10.1146/annurev.fluid.31.1.417. [Google Scholar]
- Iyemori T. 1990. Storm-time magnetospheric currents inferred from midlatitude geomagnetic field variations. J Geomagn Geoelectr 42: 1249. https://doi.org/10.5636/jgg.42.1249. [CrossRef] [Google Scholar]
- Joselyn JA, Tsurutani BT. 1990. Geomagnetic sudden impulses and storm sudden commencements: A note on terminology. Eos Trans AGU 71(47): 1808–1809. https://doi.org/10.1029/90EO00350. [CrossRef] [Google Scholar]
- Kamide Y, Kokubun S. 1996. Two-component auroral electrojet: Importance for substorm studies. J Geophys Res 101: 089. https://doi.org/10.1029/96JA00142. [Google Scholar]
- Lekscha J, Donner RV. 2019. Areawise significance tests for windowed recurrence network analysis. Proc R Soc A 475(2228): 20190161. https://doi.org/10.1098/rspa.2019.0161. [CrossRef] [Google Scholar]
- Letellier C. 2006. Estimating the Shannon entropy: Recurrence plots versus symbolic dynamics. Phys Rev Lett 96: 254102. http://doi.org/10.1103/PhysRevLett.96.254102. [CrossRef] [PubMed] [Google Scholar]
- Marwan N, Romano M, Thiel M, Kurths J. 2007. Recurrence plots for the analysis of complex systems. Phys Rep 438(56): 237–329. https://doi.org/10.1016/j.physrep.2006.11.001. [CrossRef] [Google Scholar]
- Mendes O, Domingues MO, Echer E, Hajra R, Menconi VE. 2017. Characterization of high intensity, long duration continuous auoral activity (HILDCAA) events using recurrence quantification analysis. Nonlinear Proc Geophys 24: 407–417. https://doi.org/10.5194/npg-24-407-2017. [CrossRef] [Google Scholar]
- Takens F. 1981. Detecting strange attractors in turbulence. In: Dynamical systems and turbulence, Rand D, Young LS (Eds.), Springer, New York, pp. 366–381. [Google Scholar]
- Tozzi R, Coco I, De Michelis P, Giannattasio F. 2019a. Latitudinal dependence of geomagnetically induced currents during geomagnetic storms. Ann Geophys 62: GM448. https://doi.org/10.4401/ag-7788. [Google Scholar]
- Tozzi R, De Michelis P, Coco I, Giannattasio F. 2019b. A preliminary risk assessment of geomagnetically induced currents over the Italian territory. Space Weather 17: 46. https://doi.org/10.1029/2018SW002065. [CrossRef] [Google Scholar]
- Tsurutani B, Sugiura M, Iyemori T, Goldstein BE, Gonzalez WD, Akasofu S-I, Smith EJ. 1990. The nonlinear response of AE to the IMF Bs driver: A spectral break at 5 hours. Geophys Res Lett 17: 279–282. https://doi.org/10.1029/GL017i003p00279. [CrossRef] [Google Scholar]
- Uritsky VM, Pudovkin MI. 1998. Low frequency 1/f-like fluctuations of the AE-index as a possible manifestation of self-organized criticality in the magnetosphere. Ann Geophys 16: 1580. https://doi.org/10.1007/s00585-998-1580-x. [NASA ADS] [CrossRef] [Google Scholar]
- Vassiliadis DV, Sharma AS, Eastman TE, Papadopoulos K. 1990. Low-dimensional chaos in magnetospheric activity from AE time series. Geophys Res Lett 17: 1841–1844. https://doi.org/10.1029/GL017i011p01841. [CrossRef] [Google Scholar]
- Vörös Z, Jankovičovà D, Kovacs P. 2005. Scaling and singularity characteristics of solar wind and magnetospheric fluctuations. Nonlinear Proc Geophys 9: 149–162. https://doi.org/10.5194/npg-9-149-2002. [Google Scholar]
- Wanliss JA. 2005. Fractal properties of SYM-H during quiet and active times. J Geophys Res 110: A03202. https://doi.org/10.1029/2004JA010544. [CrossRef] [Google Scholar]
- Wanliss JA, Showalter KM. 2006. High-resolution global storm index: Dst versus SYM-H. J Geophys Res 111: A02202. https://doi.org/10.1029/2005JA011034. [Google Scholar]
- Wanliss JA, Anh VV, Yu ZG, Watson S. 2004. Multifractal modeling of magnetic storms via symbolic dynamics analysis. J Geophys Res 110: A08214. https://doi.org/10.1029/2004JA010996. [Google Scholar]
- Weygand JM, McPherron RL. 2006. Dependence of ring curent asymmetry on storm phase. J Geophys Res 111: A11221. https://doi.org/10.1029/2006JA011808. [CrossRef] [Google Scholar]
- Wu Z, Huang NE. 2009. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv Adapt Data Anal 1: 1–41. https://doi.org/10.1142/S1793536909000047. [CrossRef] [Google Scholar]
- Zou Y, Donner RV, Marwan N, Donges JF, Kurths J. 2019. Complex network approaches to nonlinear time series analysis. Phys Rep 787: 1–97. https://doi.org/10.1016/j.physrep.2018.10.005. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.