Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
Topical Issue - Space Weather Instrumentation
|
|
---|---|---|
Article Number | 37 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/swsc/2020040 | |
Published online | 21 August 2020 |
- Abbo L, Ofman L, Antiochos SK, Hansteen VH, Harra L, et al. 2016. Slow solar wind: Observations and modeling. Space Sci Rev 201: 55–108. https://doi.org/10.1007/s11214-016-0264-1. [CrossRef] [Google Scholar]
- Alzate N, Morgan H. 2017. Identification of low coronal sources of “stealth” coronal mass ejections using new image processing techniques. Astrophys J 840: 103. https://doi.org/10.3847/1538-4357/aa6caa. [NASA ADS] [CrossRef] [Google Scholar]
- Antiochos SK, Mikić Z, Titov VS, Lionello R, Linker JA. 2011. A model for the sources of the slow solar wind. Astrophys J 731: 112. https://doi.org/10.1088/0004-637X/731/2/112. [CrossRef] [Google Scholar]
- Barbee TW. 1985. Multilayers for X-ray optics. Proc SPIE 563: 2–29. https://doi.org/10.1117/12.949647. [CrossRef] [Google Scholar]
- Battarbee M, Vainio R, Laitinen T, Hietala H. 2013. Injection of thermal and suprathermal seed particles into coronal shocks of varying obliquity. A&A 558: A110. https://doi.org/10.1051/0004-6361/201321348. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Bein BM, Berkebile-Stoiser S, Veronig AM, Temmer M, Muhr N, Kienreich I, Utz D, Vršnak B. 2011. Impulsive acceleration of coronal mass ejections. I. Statistics and coronal mass ejection source region characteristics. Astrophys J 738: 191. https://doi.org/10.1088/0004-637X/738/2/191. [NASA ADS] [CrossRef] [Google Scholar]
- Bein BM, Berkebile-Stoiser S, Veronig AM, Temmer M, Vršnak B. 2012. Impulsive acceleration of coronal mass ejections. II. Relation to soft X-ray flares and filament eruptions. Astrophys J 755: 44. https://doi.org/10.1088/0004-637X/755/1/44. [CrossRef] [Google Scholar]
- Bruner ME, Haisch BM, Brown WA, Acton LW, Underwood JH. 1988. Soft X-ray images of the solar corona using normal incidence optics. J Phys 49(C1): 115–118. [Google Scholar]
- Campbell T, Kalia RK, Nakano A, Vashishta P. 1999. Dynamics of oxidation of aluminum nanoclusters using variable charge molecular-dynamics simulations on parallel computers. Phys Rev Lett 82: 4866–4869. https://doi.org/10.1103/PhysRevLett.82.4866. [CrossRef] [Google Scholar]
- Catura RC, Golub L. 1988. XUV multilayered optics for astrophysics. Rev Phys Appl 23: 1741–1746. https://doi.org/10.1051/rphysap:0198800230100174100. [CrossRef] [Google Scholar]
- Chang C-H. 2004. High fidelity blazed grating replication using nanoimprint lithography. J Vac Sci Tech B Microelect Nanometer Struct 22: 3260. https://doi.org/10.1116/1.1809614. [CrossRef] [Google Scholar]
- Cheung MCM, Boerner P, Schrijver CJ, Testa P, Chen F, Peter H, Malanushenko A. 2015. Thermal diagnostics with the atmospheric imaging assembly on board the solar dynamics observatory: A validated method for differential emission measure inversions. Astrophys J 807: 143. https://doi.org/10.1088/0004-637X/807/2/143. [CrossRef] [Google Scholar]
- Cheung MCM, De Pontieu B, Martnez-Sykora J, Testa P, Winebarger A, et al. 2019. Multi-component decomposition of astronomical spectra by compressed sensing. Astrophys J 882: 13. https://doi.org/10.3847/1538-4357/ab263d. [CrossRef] [Google Scholar]
- D’Huys E, Seaton DB, Poedts S, Berghmans D. 2014. Observational characteristics of coronal mass ejections without low-coronal signatures. Astrophys J 795: 49. https://doi.org/10.1088/0004-637X/795/1/49. [NASA ADS] [CrossRef] [Google Scholar]
- De Pontieu B, Martnez-Sykora J, Testa P, Winebarger AR, Daw A, Hansteen V, Cheung MCM, Antolin P. 2020. The multi-slit approach to coronal spectroscopy with the multi-slit solar explorer (MUSE). Astrophys J 888: 3. https://doi.org/10.3847/1538-4357/ab5b03. [CrossRef] [Google Scholar]
- DeForest CE, Matthaeus WH, Viall NM, Cranmer SR. 2016. Fading coronal structure and the onset of turbulence in the young solar wind. Astrophys J 828: 66. https://doi.org/10.3847/0004-637X/828/2/66. [CrossRef] [Google Scholar]
- Del Zanna G, Aulanier G, Klein K-L, Török T. 2011. A single picture for solar coronal outflows and radio noise storms. A&A 526: A137. https://doi.org/10.1051/0004-6361/201015231. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Del Zanna G, Raymond J, Andretta V, Telloni D, Golub L. 2018. Predicting the COSIE-C signal from the outer corona up to 3 solar radii. Astrophys J 865: 132. https://doi.org/10.3847/1538-4357/aadcf1. [NASA ADS] [CrossRef] [Google Scholar]
- Dissauer K, Veronig AM, Temmer M, Podladchikova T, Vanninathan K. 2018. On the detection of coronal dimmings and the extraction of their characteristic properties. Astrophys J 855: 137. https://doi.org/10.3847/1538-4357/aaadb5. [CrossRef] [Google Scholar]
- Dissauer K, Veronig AM, Temmer M, Podladchikova T. 2019. Statistics of coronal dimmings associated with coronal mass ejections. II. Relationship between coronal dimmings and their associated CMEs. Astrophys J 874: 123. https://doi.org/10.3847/1538-4357/ab0962. [Google Scholar]
- Dresing N, Gómez-Herrero R, Klassen A, Heber B, Kartavykh Y, Dröge W. 2012. The large longitudinal spread of solar energetic particles during the 17 January 2010 solar event. Sol Phys 281: 281–300. https://doi.org/10.1007/s11207-012-0049-y. [Google Scholar]
- Evans RM, Opher M, Manchester WB, Gombosi TI. 2008. Alfvén profile in the lower corona: Implications for shock formation. Astrophys J 687: 1355–1362. https://doi.org/10.1086/592016. [NASA ADS] [CrossRef] [Google Scholar]
- Fisk LA. 2005. The open magnetic flux of the Sun. I. Transport by reconnections with coronal loops. Astrophys J 626: 563–573. https://doi.org/10.1086/429957. [NASA ADS] [CrossRef] [Google Scholar]
- Fisk LA, Zurbuchen TH. 2006. Distribution and properties of open magnetic flux outside of coronal holes. J Geophys Res (Space Phys) 111: A09115. https://doi.org/10.1029/2005JA011575. [Google Scholar]
- Gallagher PT, Lawrence GR, Dennis BR. 2003. Rapid acceleration of a coronal mass ejection in the low corona and implications for propagation. Astrophys J Lett 588: L53–L56. https://doi.org/10.1086/375504. [NASA ADS] [CrossRef] [Google Scholar]
- Golub L, Pasachoff JM. 2009. The solar corona, 2nd edn. Cambridge University Press, Cambridge, UK. [Google Scholar]
- Golub L, Hartquist TW, Quillen AC. 1989. Comments on the observability of coronal variations. Sol Phys 122: 245–261. https://doi.org/10.1007/BF00912995. [NASA ADS] [CrossRef] [Google Scholar]
- Golub L, Herant M, Kalata K, Lovas I, Nystrom G, Pardo F, Spiller E, Wilczynski J. 1990. Sub-arcsecond observations of the solar X-ray corona. Nature 344: 842–844. https://doi.org/10.1038/344842a0. [NASA ADS] [CrossRef] [Google Scholar]
- Gopalswamy N, Yashiro S. 2011. The strength and radial profile of the coronal magnetic field from the standoff distance of a coronal mass ejection-driven shock. Astrophys J Lett 736: L17. https://doi.org/10.1088/2041-8205/736/1/L17. [NASA ADS] [CrossRef] [Google Scholar]
- Goray LI. 2005. Numerical analysis of the efficiency of multilayer-coated gratings using integral method. Nucl Instr Meth Phys Res A 536: 211–221. https://doi.org/10.1016/j.nima.2004.07.173. [CrossRef] [Google Scholar]
- Goryaev F, Slemzin V, Vainshtein L, Williams DR. 2014. Study of extreme-ultraviolet emission and properties of a coronal streamer from PROBA2/SWAP, Hinode/EIS and Mauna Loa Mk4 observations. Astrophys J 781: 100. https://doi.org/10.1088/0004-637X/781/2/100. [NASA ADS] [CrossRef] [Google Scholar]
- Haélbich RP, Kunz C. 1976. Multilayer interference mirrors for the XUV range around 100 eV photon energy. Opt Commun 17: 287–292. https://doi.org/10.1016/0030-4018(76)90262-5. [CrossRef] [Google Scholar]
- Hannah IG, Kontar EP. 2013. Multi-thermal dynamics and energetics of a coronal mass ejection in the low solar atmosphere. A&A 553: A10. https://doi.org/10.1051/0004-6361/201219727. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Henke BL, Gullikson EM, Davis JC. 1993. X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. ADNDT 54: 181–342. https://doi.org/10.1006/adnd.1993.1013. [Google Scholar]
- Hinterreiter J, Magdalenic J, Temmer M, Verbeke C, Jebaraj IC, et al. 2019. Assessing the performance of EUHFORIA modeling the background solar wind. Sol Phys 294: 170. https://doi.org/10.1007/s11207-019-1558-8. [CrossRef] [Google Scholar]
- Hochedez J-F, Zhukov A, Robbrecht E, van der Linden R, Berghmans D, Vanlommel P, Theissen A, Clette F. 2005. Solar weather monitoring. Ann Geophys 23: 3149–3161. https://doi.org/10.5194/angeo-23-3149-2005. [NASA ADS] [CrossRef] [Google Scholar]
- Kobayashi K, Cirtain J, Winebarger AR, Korreck K, Golub L, et al. 2014. The high-resolution coronal imager (Hi-C). Sol Phys 289: 4393–4412. https://doi.org/10.1007/s11207-014-0544-4. [Google Scholar]
- Kozarev KA, Evans RM, Schwadron NA, Dayeh MA, Opher M, Korreck KE, Van der Holst B. 2013. Global numerical modeling of energetic proton acceleration in a coronal mass ejection traveling through the solar corona. Astrophys J 778: 43. https://doi.org/10.1088/0004-637X/778/1/43. [Google Scholar]
- Kozarev KA, Raymond JC, Lobzin VV, Hammer M. 2015. Properties of a coronal shock wave as a driver of early SEP acceleration. Astrophys J 799: 167. https://doi.org/10.1088/0004-637X/799/2/167. [NASA ADS] [CrossRef] [Google Scholar]
- Lyapin A, Jeurgens LPH, Graat PCJ, Mittemeijer EJ. 2004. The initial, thermal oxidation of zirconium at room temperature. J Appl Phys 96: 7126–7135. https://doi.org/10.1063/1.1809773. [CrossRef] [Google Scholar]
- Ma S, Attrill GDR, Golub L, Lin J. 2010. Statistical study of coronal mass ejections with and without distinct low coronal signatures. Astrophys J 722: 289–301. https://doi.org/10.1088/0004-637X/722/1/289. [NASA ADS] [CrossRef] [Google Scholar]
- Ma S, Raymond JC, Golub L, Lin J, Chen H, Grigis P, Testa P, Long D. 2011. Observations and interpretation of a low coronal shock wave observed in the EUV by the SDO/AIA. Astrophys J 738: 160. https://doi.org/10.1088/0004-637X/738/2/160. [CrossRef] [Google Scholar]
- Masson S, McCauley P, Golub L, Reeves KK, DeLuca EE. 2014. Dynamics of the transition corona. Astrophys J 787: 145. https://doi.org/10.1088/0004-637X/787/2/145. [NASA ADS] [CrossRef] [Google Scholar]
- McComas DJ, Velli M, Lewis WS, Acton LW, Balat-Pichelin M, et al. 2007. Understanding coronal heating and solar wind acceleration: Case for in situ near-Sun measurements. Rev Geophys 45: RG1004. https://doi.org/10.1029/2006RG000195. [NASA ADS] [CrossRef] [Google Scholar]
- Mishra SK, Srivastava AK. 2019. Linkage of geoeffective stealth CMEs associated with the eruption of coronal plasma channel and jet-like structure. Sol Phys 294: 169. https://doi.org/10.1007/s11207-019-1560-1. [CrossRef] [Google Scholar]
- Mozer FS, Agapitov OV, Bale SD, Bonnell JW, Case T, et al. 2020. Switchbacks in the solar magnetic field: Their evolution, their content, and their effects on the plasma. Astrophys J Suppl Ser 246: 68. https://doi.org/10.3847/1538-4365/ab7196. [Google Scholar]
- Newkirk G, Altschuler MD, Harvey J. 1968. Influence of magnetic fields on the structure of the solar corona. In: Structure and development of solar active regions, Kiepenheuer KO (Ed.), (IAU Symposium 35), Springer, Dordrecht, p. 379. [CrossRef] [Google Scholar]
- Pontin DI, Wyper PF. 2015. The effect of reconnection on the structure of the Sun’s open-closed flux boundary. Astrophys J 805: 39. https://doi.org/10.1088/0004-637X/805/1/39. [CrossRef] [Google Scholar]
- Reames DV. 1999. Particle acceleration at the Sun and in the heliosphere. Space Sci Rev 90: 413–491. https://doi.org/10.1023/A:1005105831781. [NASA ADS] [CrossRef] [Google Scholar]
- Reeves KK, Golub L. 2011. Atmospheric imaging assembly observations of hot flare plasma. Astrophys J Lett 727: L52. https://doi.org/10.1088/2041-8205/727/2/L52. [Google Scholar]
- Riley P, Lionello R, Linker JA, Mikic Z, Luhmann J, Wijaya J. 2011. Global MHD modeling of the solar corona and inner heliosphere for the whole heliosphere interval. Sol Phys 274: 361–377. https://doi.org/10.1007/s11207-010-9698-x. [NASA ADS] [CrossRef] [Google Scholar]
- Riley P, Mays ML, Andries J, Amerstorfer T, Biesecker D, et al. 2018. Forecasting the arrival time of coronal mass ejections: analysis of the CCMC CME scoreboard. Space Weather 16: 1245–1260. https://doi.org/10.1029/2018SW001962. [NASA ADS] [CrossRef] [Google Scholar]
- Robbrecht E, Patsourakos S, Vourlidas A. 2009. No trace left behind: STEREO observation of a coronal mass ejection without low coronal signatures. Astrophys J 701: 283–291. https://doi.org/10.1088/0004-637X/701/1/283. [NASA ADS] [CrossRef] [Google Scholar]
- Robbrecht E, Wang Y-M. 2010. The temperature-dependent nature of coronal dimmings. Astrophys J Lett 720: L88–L92. https://doi.org/10.1088/2041-8205/720/1/L88. [NASA ADS] [CrossRef] [Google Scholar]
- Savage SL, McKenzie DE, Reeves KK, Forbes TG, Longcope DW. 2010. Reconnection outflows and current sheet observed with Hinode/XRT in the 2008 April 9 “Cartwheel CME” flare. Astrophys J 722: 329–342. https://doi.org/10.1088/0004-637X/722/1/329. [Google Scholar]
- Savage SL, Holman G, Reeves KK, Seaton DB, McKenzie DE, Su Y. 2012a. Low-altitude reconnection inflow-outflow observations during a 2010 November 3 solar eruption. Astrophys J 754: 13. https://doi.org/10.1088/0004-637X/754/1/13. [NASA ADS] [CrossRef] [Google Scholar]
- Savage SL, McKenzie DE, Reeves KK. 2012b. Re-interpretation of supra-arcade downflows in solar flares. Astrophys J Lett 747: L40. https://doi.org/10.1088/2041-8205/747/2/L40. [CrossRef] [Google Scholar]
- Seaton DB, De Groof A, Shearer P, Berghmans D, Nicula B. 2013. SWAP observations of the long-term, large-scale evolution of the extreme-ultraviolet solar corona. Astrophys J 777: 72. https://doi.org/10.1088/0004-637X/777/1/72. [Google Scholar]
- Sheeley NR. 2017. Origin of the Wang-Sheeley-Arge solar wind model. Hist Geo Space Sci 8: 21–28. https://doi.org/10.5194/hgss-8-21-2017. [Google Scholar]
- Sheeley NR, Wang Y-M. 2007. In/out pairs and the detachment of coronal streamers. Astrophys J 655: 1142–1156. https://doi.org/10.1086/510323. [NASA ADS] [CrossRef] [Google Scholar]
- Silk JK, Kahler S, Krieger AS, Timothy AF, Vaiana GS. 1975. Objective grating studies of X-ray flare spectra. Osservazioni e Memorie dell’Osservatorio Astrofisico di Arcetri 104: 143–156. [Google Scholar]
- Slemzin V, Bougaenko O, Ignatiev A, Kuzin S, Mitrofanov A, Pertsov A, Zhitnik I. 2008. Off-limb EUV observations of the solar corona and transients with the CORONAS-F/SPIRIT telescope-coronagraph. Ann Geophys 26: 3007–3016. https://doi.org/10.5194/angeo-26-3007-2008. [Google Scholar]
- Spiller E. 1974. Multilayer interference coatings for the vacuum ultraviolet. In: Space optics, Thompson BJ, Shannon RR (Eds.), National Academy of Sciences, Washington, DC, pp. 570–581. [Google Scholar]
- Sterling AC, Hudson HS. 1997. Yohkoh SXT observations of X-ray “dimming” associated with a halo coronal mass ejection. Astrophys J 491: L55–L58. https://doi.org/10.1086/311043. [CrossRef] [Google Scholar]
- Su Y, Veronig AM, Holman GD, Dennis BR, Wang T, Temmer M, Gan W. 2013. Imaging coronal magnetic-field reconnection in a solar flare. Nat Phys 9: 489–493. https://doi.org/10.1038/nphys2675. [NASA ADS] [CrossRef] [Google Scholar]
- Su Y, van Ballegooijen A, McCauley P, Ji H, Reeves KK, DeLuca EE. 2015. Magnetic structure and dynamics of the erupting solar polar crown prominence on 2012 March 12. Astrophys J 807: 144. https://doi.org/10.1088/0004-637X/807/2/144. [CrossRef] [Google Scholar]
- Sun JQ, Cheng X, Ding MD, Guo Y, Priest ER, Parnell CE, Edwards SJ, Zhang J, Chen PF, Fang C. 2015. Extreme ultraviolet imaging of three-dimensional magnetic reconnection in a solar eruption. Nat Commun 6: 7598. https://doi.org/10.1038/ncomms8598. [CrossRef] [Google Scholar]
- Tadikonda SK, Freesland DC, Minor RR, Seaton DB, Comeyne GJ, Krimchansky A. 2019. Coronal imaging with the solar ultraviolet imager. Sol Phys 294: 28. https://doi.org/10.1007/s11207-019-1411-0. [CrossRef] [Google Scholar]
- Temmer M. 2016. Kinematical properties of coronal mass ejections. Astron Nachr 337: 1010. https://doi.org/10.1002/asna.201612425. [CrossRef] [Google Scholar]
- Thompson BJ, Cliver EW, Nitta N, Delannée C, Delaboudinière J-P. 2000. Coronal dimmings and energetic CMEs in April–May 1998. Geophys Res Lett 27: 1431–1434. https://doi.org/10.1029/1999GL003668. [NASA ADS] [CrossRef] [Google Scholar]
- Tousey R, Bartoe JDF, Bohlin JD, Brueckner GE, Purcell JD, Scherrer VE, Sheeley NR Jr, Schumacher RJ, Vanhoosier ME. 1973. A preliminary study of the extreme ultraviolet spectroheliograms from Skylab. Sol Phys 33: 265. https://doi.org/10.1007/BF00152418. [CrossRef] [Google Scholar]
- Underwood JH, Gullikson EM, Nguyen K. 1993. Tarnishing of Mo/Si multilayer X-ray mirrors. Appl Opt 32: 6985. https://doi.org/10.1364/AO.32.006985. [CrossRef] [Google Scholar]
- Vásquez AM, van Ballegooijen AA, Raymond JC. 2003. The effect of proton temperature anisotropy on the solar minimum corona and wind. Astrophys J 598: 1361. https://doi.org/10.1086/379008. [Google Scholar]
- Veronig AM, Muhr N, Kienreich IW, Temmer M, Vršnak B. 2010. First observations of a dome-shaped large-scale coronal extreme-ultraviolet wave. Astrophys J Lett 716: L57–L62. https://doi.org/10.1088/2041-8205/716/1/L57. [CrossRef] [Google Scholar]
- Veronig AM, Podladchikova T, Dissauer K, Temmer M, Seaton DB, Long D, Guo J, Vršnak B, Harra L, Kliem B. 2018. Genesis and impulsive evolution of the 2017 September 10 coronal mass ejection. Astrophys J 868: 107. https://doi.org/10.3847/1538-4357/aaeac5. [NASA ADS] [CrossRef] [Google Scholar]
- Veronig AM, Gömöry P, Dissauer K, Temmer M, Vanninathan K. 2019. Spectroscopy and differential emission measure diagnostics of a coronal dimming associated with a fast halo CME. Astrophys J 879: 85. https://doi.org/10.3847/1538-4357/ab2712. [Google Scholar]
- Walker ABC, Barbee TW, Hoover RB, Lindblom JF. 1988. Soft X-ray images of the solar corona with a normal-incidence cassegrain multilayer telescope. Science 241: 1781–1787. https://doi.org/10.1126/science.241.4874.1781. [CrossRef] [PubMed] [Google Scholar]
- Walker ABC, Hoover RB, Barbee TW Jr. 1993. High resolution thermally differentiated images of the chromosphere and corona. In: Physics of solar and stellar coronae, Linsky JF, Serio S (Eds.), Astrophysics and Space Science Library, Springer, Dordrecht, Vol. 183, pp. 83–96. https://doi.org/10.1007/978-94-011-1964-1_7. [Google Scholar]
- Wang Y-M. 1996. Nonradial coronal streamers. Astrophys J Lett 456: L119. https://doi.org/10.1086/309871. [Google Scholar]
- Weberg MJ, Lepri ST, Zurbuchen TH. 2015. Coronal sources, elemental fractionation, and release mechanisms of heavy ion dropouts in the solar wind. Astrophys J 801: 99. https://doi.org/10.1088/0004-637X/801/2/99. [CrossRef] [Google Scholar]
- West MJ, Seaton DB. 2015. SWAP observations of post-flare giant arches in the long-duration 14 October 2014 solar eruption. Astrophys J Lett 801: L6. https://doi.org/10.1088/2041-8205/801/1/L6. [NASA ADS] [CrossRef] [Google Scholar]
- Winebarger AR, Weber M, Bethge C, Downs C, Golub L, et al. 2019. Unfolding overlapped slitless imaging spectrometer data for extended sources. Astrophys J 882: 12. https://doi.org/10.3847/1538-4357/ab21db. [CrossRef] [Google Scholar]
- Yan XL, Yang LH, Xue ZK, Mei ZX, Kong DF, Wang JC, Li QL. 2018. Simultaneous observation of a flux rope eruption and magnetic reconnection during an X-class solar flare. Astrophys J Lett 853: L18. https://doi.org/10.3847/2041-8213/aaa6c2. [Google Scholar]
- Yeates AR, Mackay DH, van Ballegooijen AA. 2008. Modelling the global solar corona II: Coronal evolution and filament chirality comparison. Sol Phys 247: 103. https://doi.org/10.1007/s11207-007-9097-0. [Google Scholar]
- Yokoyama T, Akita K, Morimoto T, Inoue K, Newmark J. 2001. Clear evidence of reconnection inflow of a solar flare. Astrophys J Lett 546: L69–L72. https://doi.org/10.1086/318053. [NASA ADS] [CrossRef] [Google Scholar]
- Zhang J, Dere KP, Howard RA, Kundu MR, White SM. 2001. On the temporal relationship between coronal mass ejections and flares. Astrophys J 559: 452–462. https://doi.org/10.1086/322405. [NASA ADS] [CrossRef] [Google Scholar]
- Zhitnik IA, Ignatiev AP, Korneev VV, Krutov VV, Kuzin SV, et al. 1998. Instruments for imaging XUV spectroscopy of the sun on board the CORONAS-I satellite. Proc SPIE 3406: 1–19. https://doi.org/10.1117/12.310979. [CrossRef] [Google Scholar]
- Zucca P, Pick M, Démoulin P, Kerdraon A, Lecacheux A, Gallagher PT. 2014. Understanding coronal mass ejections and associated shocks in the solar corona by merging multiwavelength observations. Astrophys J 95: 68. https://doi.org/10.1088/0004-637X/795/1/68. [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.