Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
Topical Issue - Space Weather research in the Digital Age and across the full data lifecycle
|
|
---|---|---|
Article Number | 36 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/swsc/2020037 | |
Published online | 30 July 2020 |
- Afshartous D, Preston RA. 2010. Confidence intervals for dependent data: Equating non-overlap with statistical significance. Comput Stat Data Anal 54(10): 2296–2305. https://doi.org/10.1016/j.csda.2010.04.011. [CrossRef] [Google Scholar]
- Al-Shedivat M, Wilson AG, Saatchi Y, Hu Z, Xing EP. 2017. Learning scalable deep kernels with recurrent structure. J Mach Learn Res 18(82): 1–37. URL http://jmlr.org/papers/v18/16-498.html. [Google Scholar]
- Arge CN, Henney CJ, Koller J, Compeau CR, Young S, MacKenzie D, Fay A, Harvey JW. 2010. Air force data assimilative photospheric flux transport (ADAPT) model. Twelfth Int Sol Wind Conf 1216: 343–346. https://doi.org/10.1063/1.3395870. [Google Scholar]
- Baker DN, Hones EW, Payne JB, Feldman WC. 1981. A high time resolution study of interplanetary parameter correlations with AE. Geophys Res Lett 8(2): 179–182. https://doi.org/10.1029/GL008i002p00179. [CrossRef] [Google Scholar]
- Bala R, Reiff P. 2012. Improvements in short-term forecasting of geomagnetic activity. Space Weather 10(6): S06001. https://doi.org/10.1029/2012SW000779. [CrossRef] [Google Scholar]
- Bartels JR. 1949. The standardized index, Ks and the planetary index, Kp. IATME 97(12b): 0001. [Google Scholar]
- Bingham Suzy, Murray Sophie A, Guerrero Antonio, Glover Alexi, Thorn Peter. 2019. Summary of the plenary sessions at European Space Weather Week 15: Space weather users and service providers working together now and in the future. J Space Weather Space Clim 9: A32. https://doi.org/10.1051/swsc/2019031. [CrossRef] [Google Scholar]
- Boberg F, Wintoft P, Lundstedt H. 2000. Real time Kp predictions from solar wind data using neural networks. Phys Chem Earth Part C Sol Terr Planet Sci 25(4): 275–280. https://doi.org/10.1016/S1464-1917(00)00016-7. [Google Scholar]
- Borovsky JE. 2013. Physical improvements to the solar wind reconnection control function for the Earth’s magnetosphere. J Geophys Res Space Phys 118(5): 2113–2121. https://doi.org/10.1002/jgra.50110. [CrossRef] [Google Scholar]
- Borovsky JE. 2014. Canonical correlation analysis of the combined solar wind and geomagnetic index data sets. J Geophys Res Space Phys 119(7): 5364–5381. https://doi.org/10.1002/2013JA019607. [CrossRef] [Google Scholar]
- Borovsky JE, Denton MH. 2006. Differences between CME-driven storms and CIR-driven storms. J Geophys Res Space Phys 111(A7) : A07S08. https://doi.org/10.1029/2005JA011447. [Google Scholar]
- Borovsky JE, Thomsen MF, Elphic RC, Cayton TE, McComas DJ. 1998. The transport of plasma sheet material from the distant tail to geosynchronous orbit. J Geophys Res Space Phys 103(A9): 20297–20331. https://doi.org/10.1029/97JA03144. [CrossRef] [Google Scholar]
- Bradley AP. 1997. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn 30(7): 1145–1159. https://doi.org/10.1016/S0031-3203(96)00142-2. [CrossRef] [Google Scholar]
- Camporeale E. 2019. The challenge of machine learning in space weather: Nowcasting and forecasting. Space Weather 17(8): 1166–1207. https://doi.org/10.1029/2018SW002061. [CrossRef] [Google Scholar]
- Carbary JF. 2005. A Kp-based model of auroral boundaries. Space Weather 3(10): S10001. https://doi.org/10.1029/2005SW000162. [CrossRef] [Google Scholar]
- Choi H-S, Lee J, Cho K-S, Kwak Y-S, Cho I-H, Park Y-D, Kim Y-H, Baker DN, Reeves GD, Lee D-K. 2011. Analysis of GEO spacecraft anomalies: Space weather relationships. Space Weather 9(6): S06001. https://doi.org/10.1029/2010SW000597. [Google Scholar]
- Chollet F. 2015. Keras. https://keras.io. [Google Scholar]
- Costello K.A.. 1998. Moving the rice MSFM into a real-time forecast mode using solar wind driven forecast modules. PhD Thesis. URL https://scholarship.rice.edu/handle/1911/19251. [Google Scholar]
- DeLong ER, DeLong DM, Clarke-Pearson DL. 1988. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 44(3): 837–845. https://doi.org/10.2307/2531595. [CrossRef] [Google Scholar]
- Dungey JW. 1961. Interplanetary magnetic field and the auroral zones. Phys Rev Lett 6(2): 47–48. https://doi.org/10.1103/PhysRevLett.6.47. [Google Scholar]
- Eastwood JP, Biffis E, Hapgood MA, Green L, Bisi MM, Bentley RD, Wicks R, McKinnell L-A, Gibbs M, Burnett C. 2017. The Economic impact of space weather: Where do we stand? Risk Anal 37(2): 206–218. https://doi.org/10.1111/risa.12765. [CrossRef] [Google Scholar]
- Estabrooks A, Jo T, Japkowicz N. 2004. A multiple resampling method for learning from imbalanced data sets. Comput Intell 20(1): 18–36. https://doi.org/10.1111/j.0824-7935.2004.t01-1-00228.x. [CrossRef] [Google Scholar]
- Garcia HA. 1994. Temperature and emission measure from GOES soft X-ray measurements. Sol Phys 154(2): 275–308. https://doi.org/10.1007/BF00681100. [Google Scholar]
- Gonzalez WD, Tsurutani BT, Clúa de Gonzalez AL. 1999. Interplanetary origin of geomagnetic storms. Space Sci Rev 88(3): 529–562. https://doi.org/10.1023/A:1005160129098. [NASA ADS] [CrossRef] [Google Scholar]
- Haiducek JD, Welling DT, Ganushkina NY, Morley SK, Ozturk DS. 2017. SWMF global magnetosphere simulations of January 2005: Geomagnetic indices and cross-polar cap potential. Space Weather 15(12): 1567–1587. https://doi.org/10.1002/2017SW001695. [CrossRef] [Google Scholar]
- Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Comput 9(8): 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735. [Google Scholar]
- Horne RB, Glauert SA, Meredith NP, Boscher D, Maget V, Heynderickx D, Pitchford D. 2013. Space weather impacts on satellites and forecasting the Earth’s electron radiation belts with SPACECAST. Space Weather 11(4): 169–186. https://doi.org/10.1002/swe.20023. [CrossRef] [Google Scholar]
- Hundhausen AJ. 1970. Composition and dynamics of the solar wind plasma. Rev Geophys 8(4): 729–811. https://doi.org/10.1029/RG008i004p00729. [CrossRef] [Google Scholar]
- Hunter JD. 2007. Matplotlib: A 2D graphics environment. Comput Sci Eng 9(3): 90–95. https://doi.org/10.1109/MCSE.2007.55. [Google Scholar]
- Johnson JR, Wing S, Camporeale E. 2018. Transfer entropy and cumulant-based cost as measures of nonlinear causal relationships in space plasmas: applications to Dst. Ann Geophys 36(4): 945–952. https://doi.org/10.5194/angeo-36-945-2018. [CrossRef] [Google Scholar]
- Kahler SW, Ling AG. 2018. Forecasting solar energetic particle (SEP) events with fare X-ray peak ratios. J Space Weather Space Clim 8: A47. https://doi.org/10.1051/swsc/2018033. [Google Scholar]
- Kay HRM, Harra LK, Matthews SA, Culhane JL, Green LM. 2003. The soft X-ray characteristics of solar flares, both with and without associated CMEs. Astron Astrophys 400(2): 779–784. https://doi.org/10.1051/0004-6361:20030095. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Kilpua EKJ, Luhmann JG, Gosling J, Li Y, Elliott H, et al. 2009. Small solar wind transients and their connection to the large-scale coronal structure. Sol Phys 256(1): 327–344. https://doi.org/10.1007/s11207-009-9366-1. [NASA ADS] [CrossRef] [Google Scholar]
- Liemohn MW, McCollough JP, Jordanova VK, Ngwira CM, Morley SK, et al. 2018. Model evaluation guidelines for geomagnetic index predictions. Space Weather 16(12): 2079–2102. https://doi.org/10.1029/2018SW002067. [CrossRef] [Google Scholar]
- Lippiello E, de Arcangelis L, Godano C. 2008. Different triggering mechanisms for solar flares and coronal mass ejections. Astron Astrophys 488(2): L29–L32. https://doi.org/10.1051/0004-6361:200810164. [Google Scholar]
- Luo B, Liu S, Gong J. 2017. Two empirical models for short-term forecast of Kp. Space Weather 15(3): 503–516. https://doi.org/10.1002/2016SW001585. [CrossRef] [Google Scholar]
- Mayaud PN. 1980. Derivation, meaning and use of geomagnetic indices. In: Vol. 22 of Geophysical monograph, American Geophysical Union. https://doi.org/10.1029/GM022. [Google Scholar]
- McKinney W. 2010. Data structures for statistical computing in python. In: Proceedings of the 9th Python in Science Conference, van der Walt S, Millman J, (Eds.), pp. 56–61. https://doi.org/10.25080/Majora-92bf1922-012. [Google Scholar]
- Michalek G. 2009. Two types of flare-associated coronal mass ejections. Astron Astrophys 494(1): 263–268. https://doi.org/10.1051/0004-6361:200810662. [CrossRef] [EDP Sciences] [Google Scholar]
- Millman KJ, Aivazis M. 2011. Python for scientists and engineers. Comput Sci Eng 13(2): 9–12. https://doi.org/10.1109/MCSE.2011.36. [Google Scholar]
- Morley S.. 2018. drsteve/PyForecastTools: PyForecastTools. https://doi.org/10.5281/zenodo.1256921. [Google Scholar]
- Morley SK. 2019. Challenges and opportunities in magnetospheric space weather prediction. Space Weather 18(3): e2018SW002108. https://doi.org/10.1029/2018SW002108. [Google Scholar]
- Morley SK, Koller J, Welling DT, Larsen BA, Henderson MG, Niehof JT. 2011. Spacepy – A python-based library of tools for the space sciences. In: Proceedings of the 9th Python in Science Conference (SciPy 2010), Austin, TX, pp. 67–71. URL https://conference.scipy.org/proceedings/scipy2010/pdfs/morley.pdf. [Google Scholar]
- Morley SK, Brito TV, Welling DT. 2018a. Measures of model performance based on the log accuracy ratio. Space Weather 16(1): 69–88. https://doi.org/10.1002/2017SW001669. [CrossRef] [Google Scholar]
- Morley SK, Welling DT, Woodroffe JR. 2018b. Perturbed input ensemble modeling with the space weather modeling framework. Space Weather 16(9): 1330–1347. https://doi.org/10.1029/2018SW002000. [CrossRef] [Google Scholar]
- Murphy AH. 1995. The coefficients of correlation and determination as measures of performance in forecast verification. Weather Forecast 10(4): 681–688. https://doi.org/10.1175/1520-0434(1995)010<0681:TCOCAD>2.0.CO;2. [CrossRef] [Google Scholar]
- Newell PT, Sotirelis T, Liou K, Meng C-I, Rich FJ. 2007. A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J Geophys Res Space Phys 112(A1): A01206. https://doi.org/10.1029/2006JA012015. [Google Scholar]
- Núñez M. 2018. Predicting well-connected SEP events from observations of solar soft X-rays and near-relativistic electrons. J Space Weather Space Clim 8: A36. https://doi.org/10.1051/swsc/2018023. [CrossRef] [Google Scholar]
- Obrien TP. 2009. SEAES-GEO: A spacecraft environmental anomalies expert system for geosynchronous orbit. Space Weather 7(9): S09003. https://doi.org/10.1029/2009SW000473. [Google Scholar]
- Osthus D, Caragea PC, Higdon D, Morley SK, Reeves GD, Weaver BP. 2014. Dynamic linear models for forecasting of radiation belt electrons and limitations on physical interpretation of predictive models. Space Weather 12(6): 426–446. https://doi.org/10.1002/2014SW001057. [CrossRef] [Google Scholar]
- Perez F, Granger BE. 2007. IPython: A system for interactive scientific computing. Comput Sci Eng 9(3): 21–29. https://doi.org/10.1109/MCSE.2007.53. [CrossRef] [Google Scholar]
- Qiu Q, Fleeman JA, Ball DR. 2015. Geomagnetic disturbance: A comprehensive approach by American electric power to address the impacts. IEEE Elect Mag 3(4): 22–33. https://doi.org/10.1109/MELE.2015.2480615. [CrossRef] [Google Scholar]
- Rasmussen CE, Williams CKI. 2006. Gaussian processes for machine learning. MIT Press. URL http://www.gaussianprocess.org/gpml/. [Google Scholar]
- Revelle W.R.. 2020. psych: Procedures for personality and psychological research. R package version 1.9.12.31, URL https://CRAN.R-project.org/package=psych. [Google Scholar]
- Richardson IG, Cane HV. 2012. Solar wind drivers of geomagnetic storms during more than four solar cycles. J Space Weather Space Clim 2: A01. https://doi.org/10.1051/swsc/2012001. [Google Scholar]
- Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M. 2011. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform 12(77). https://doi.org/10.1186/1471-2105-12-77. [CrossRef] [Google Scholar]
- Schrijver CJ, Kauristie K, Aylward AD, Denardini CM, Gibson SE, et al. 2015. Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS. Adv Space Res 55(12): 2745–2807. https://doi.org/10.1016/j.asr.2015.03.023. [NASA ADS] [CrossRef] [Google Scholar]
- Schwenn R, Dal Lago A, Huttunen E, Gonzalez WD. 2005. The association of coronal mass ejections with their effects near the Earth. Ann Geophys 23(3): 1033–1059. https://doi.org/10.5194/angeo-23-1033-2005. [Google Scholar]
- Sexton ES, Nykyri K, Ma X. 2019. Kp forecasting with a recurrent neural network. J Space Weather Space Clim 9: A19. https://doi.org/10.1051/swsc/2019020. [CrossRef] [Google Scholar]
- Sharpe MA, Murray SA. 2017. Verification of space weather forecasts issued by the met office space weather operations centre. Space Weather 15(10): 1383–1395. https://doi.org/10.1002/2017SW001683. [CrossRef] [Google Scholar]
- Shprits YY, Vasile R, Zhelavskaya IS. 2019. Nowcasting and predicting the Kp index using historical values and real-time observations. Space Weather 17(8): 1219–1229. https://doi.org/10.1029/2018SW002141. [CrossRef] [Google Scholar]
- Srivastava N, Venkatakrishnan P. 2002. Relationship between CME speed and geomagnetic storm intensity. Geophys Res Lett 29(9): 1-1–1-4. https://doi.org/10.1029/2001GL013597. [CrossRef] [Google Scholar]
- Srivastava N, Venkatakrishnan P. 2004. Solar and interplanetary sources of major geomagnetic storms during 1996–2002. J Geophys Res Space Phys 109(A10): A10103. https://doi.org/10.1029/2003JA010175. [NASA ADS] [CrossRef] [Google Scholar]
- Steiger JH. 1980. Tests for comparing elements of a correlation matrix. Psychol Bull 87(2): 245–251. https://doi.org/10.1037/0033-2909.87.2.245. [CrossRef] [Google Scholar]
- Sun X, Xu W. 2014. Fast implementation of DeLong’s algorithm for comparing the areas under correlated receiver operating characteristic curves. IEEE Sig Proc Lett 21(11): 1389–1393. https://doi.org/10.1109/LSP.2014.2337313. [CrossRef] [Google Scholar]
- Tan Y, Hu Q, Wang Z, Zhong Q. 2018. Geomagnetic index Kp forecasting with LSTM. Space Weather 16(4): 406–416. https://doi.org/10.1002/2017SW001764. [CrossRef] [Google Scholar]
- Tóth G, Sokolov IV, Gombosi TI, Chesney DR, Clauer CR, et al. 2005. Space weather modeling framework: A new tool for the space science community. J Geophys Res Space Phys 110(A12): A12226. https://doi.org/10.1029/2005JA011126. [CrossRef] [Google Scholar]
- Wilks DS. 2006. Statistical methods in the atmospheric sciences, 2nd edn, Academic Press. https://www.elsevier.com/books/statistical-methods-in-the-atmospheric-sciences/wilks/978-0-12-385022-5. [Google Scholar]
- Wing S, Johnson JR, Jen J, Meng C-I, Sibeck DG, Bechtold K, Freeman J, Costello K, Balikhin M, Takahashi K. 2005. Kp forecast models. J Geophys Res Space Phys 110(A4): A04203. https://doi.org/10.1029/2004JA010500. [Google Scholar]
- Wing S, Johnson JR, Camporeale E, Reeves GD. 2016. Information theoretical approach to discovering solar wind drivers of the outer radiation belt. J Geophys Res Space Phys 121(10): 9378–9399. https://doi.org/10.1002/2016JA022711. [CrossRef] [Google Scholar]
- Winter LM, Balasubramaniam KS. 2014. Estimate of solar maximum using the 1–8Å geostationary operational environmental satellites X–ray measurements. Astrophys J 793(2): L45. https://doi.org/10.1088/2041-8205/793/2/l45. [CrossRef] [Google Scholar]
- Winter LM, Balasubramaniam K. 2015. Using the maximum X-ray flux ratio and X-ray background to predict solar flare class. Space Weather 13(5): 286–297. https://doi.org/10.1002/2015SW001170. [NASA ADS] [CrossRef] [Google Scholar]
- Wintoft P, Wik M, Matzka J, Shprits Y. 2017. Forecasting Kp from solar wind data: input parameter study using 3-hour averages and 3-hour range values. J Space Weather Space Clim 7: A29. https://doi.org/10.1051/SWSC/2017027. [CrossRef] [Google Scholar]
- Wu DJ, Feng HQ, Chao JK. 2008. Energy spectrum of interplanetary magnetic flux ropes and its connection with solar activity. Astron Astrophys 480(1): L9–L12. https://doi.org/10.1051/0004-6361:20079173. [CrossRef] [EDP Sciences] [Google Scholar]
- Xu F, Borovsky JE. 2015. A new four-plasma categorization scheme for the solar wind. J Geophys Res Space Phys 120(1): 70–100. https://doi.org/10.1002/2014JA020412. [CrossRef] [Google Scholar]
- Yap BW, Rani KA, Rahman HAA, Fong S, Khairudin Z, Abdullah NN. 2014. An application of oversampling, undersampling, bagging and boosting in handling imbalanced datasets. In: Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013), Herawan T., Deris M.M., Abawajy J. (Eds.), Springer Singapore, Singapore, pp. 13–22. [Google Scholar]
- Zhang J, Blanco-Cano X, Nitta N, Srivastava N, Mandrini CH. 2018. Editorial: Earth-affecting solar transients. Sol Phys 293: 80. https://doi.org/10.1007/s11207-018-1302-9. [CrossRef] [Google Scholar]
- Zhelavskaya IS, Vasile R, Shprits YY, Stolle C, Matzka J. 2019. Systematic analysis of machine learning and feature selection techniques for prediction of the Kp index. Space Weather 17(10): 1461–1486. https://doi.org/10.1029/2019SW002271. [CrossRef] [Google Scholar]
- Zhou G, Wang J, Cao Z. 2003. Correlation between halo coronal mass ejections and solar surface activity. A&A 397(3): 1057–1067. https://doi.org/10.1051/0004-6361:20021463. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.