Topical Issue - Space Weather Instrumentation
Open Access
Technical Article
Issue
J. Space Weather Space Clim.
Volume 10, 2020
Topical Issue - Space Weather Instrumentation
Article Number 41
Number of page(s) 11
DOI https://doi.org/10.1051/swsc/2020044
Published online 08 September 2020
  • Brueckner GE, Howard RA, Koomen MJ, Korendyke CM, Michels DJ, et al. 1995. The Large Angle Spectroscopic Coronagraph (LASCO). Sol. Phys. 162(1–2): 357–402. https://doi.org/10.1007/BF00733434. [Google Scholar]
  • Chatzistergos T, Ermolli I, Krivova NA, Solanki SK, Banerjee D, et al. 2020. Analysis of full-disc Ca II K spectroheliograms. III. Plage area composite series covering 1892–2019. A&A 639: A88. https://doi.org/10.1051/0004-6361/202037746. [EDP Sciences] [Google Scholar]
  • Domingo V, Fleck B, Poland AI. 1995. The SOHO mission: An overview. Sol Phys 162(1–2): 1–37. https://doi.org/10.1007/BF00733425. [Google Scholar]
  • Gosain S, Harvey JW. 2015. Design of a full stokes polarimeter for chromospheric measurements with SOLIS/VSM. In: Polarimetry: From the sun to stars and stellar environments, Nagendra KN, Bagnulo S, Centeno R, Jesús Martnez González M (Eds.), Vol. 305 of IAU Symposium, pp. 186–190. https://doi.org/10.1017/S1743921315004743. [Google Scholar]
  • Gosain S, Roth M, Hill F, Pevtsov A, Martinez Pillet V, Thompson MJ. 2018. Design of a next generation synoptic solar observing network: Solar physics research integrated network group (SPRING). In: Vol. 10702 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p. 107024H. https://doi.org/10.1117/12.2306555. [Google Scholar]
  • Hanaoka Y. 2006. Hα polarimetry as a probe of chromospheric magnetic fields. In: Solar MHD theory and observations: A high spatial resolution perspective, ASP Conference Series, Vol. 354, pp. 324–327. [Google Scholar]
  • Hanaoka Y.. 2013. Long-term synoptic observations of the Sun at the National Astronomical Observatory of Japan. In: Eclipse on the Coral Sea: Cycle 24 Ascending (GONG 2012, LWS/SDO-5, and SOHO 27), Vol. 440 of Journal of Physics Conference Series, p. 012041. https://doi.org/10.1088/1742-6596/440/1/012041. [Google Scholar]
  • Hanaoka Y, Katsukawa Y, Morita S, Kamata Y, Ishizuka N. 2019. Development of an infrared camera using a Hawaii-2RG detector for solar polarimetry. In: Proceedings of the 9th Solar Polarization Workshop SPW9, 26–30 August, 2019, Göttingen, Germany, Gandorfer AM, Lagg A, Raab K (Eds.). https://doi.org/10.17617/2.3194859. [Google Scholar]
  • Hanaoka Y, Sakurai T. 2017. Statistical study of the magnetic field orientation in solar filaments. Astrophys J 851(2): 130. https://doi.org/10.3847/1538-4357/aa9cf1. [Google Scholar]
  • Hanaoka Y, Solar Observatory of NAOJ. 2016. Past and present of the synoptic observations of the Sun at the National Astronomical Observatory of Japan. In: Ground-based solar observations in the space instrumentation era, ASP Conference Series, Vol. 504, pp. 313–315. [Google Scholar]
  • Hill F. 2018. The Global Oscillation Network Group facility – An example of research to operations in Space Weather. Space Weather 16(10): 1488–1497. https://doi.org/10.1029/2018SW002001. [Google Scholar]
  • Hill F., Hammel H., Martinez-Pillet V., de Wijn A., Gosain S., et al. 2019. ngGONG: The next generation GONG – A new solar synoptic observational network. In: Astro2020: Decadal survey on Astronomy and Astrophysics, APC white papers, no. 74, Vol. 51, Bulletin of the American Astronomical Society, p. 74. [Google Scholar]
  • Hu Q, Qiu J, Dasgupta B, Khare A, Webb GM. 2014. Structures of interplanetary magnetic flux ropes and comparison with their solar sources. Astrophys J 793(1): 53. https://doi.org/10.1088/0004-637X/793/1/53. [Google Scholar]
  • Ichimoto K, Ishii TT, Otsuji K, Kimura G, Nakatani Y, et al. 2017. A new solar imaging system for observing high-speed eruptions: Solar Dynamics Doppler Imager (SDDI). Sol Phys 292(4): 63. https://doi.org/10.1007/s11207-017-1082-7. [Google Scholar]
  • Keller CU, Harvey JW, Giampapa MS. 2003. SOLIS: An innovative suite of synoptic instruments. In: Vol. 4853 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pp. 194–204. https://doi.org/10.1117/12.460373. [Google Scholar]
  • Kilpua EKJ, Lugaz N, Mays ML, Temmer M. 2019. Forecasting the structure and orientation of earthbound coronal mass ejections. Space Weather 17(4): 498–526. https://doi.org/10.1029/2018SW001944. [Google Scholar]
  • Kuckein C, González Manrique SJ, Kleint L, Asensio Ramos A. 2020. Determining the dynamics and magnetic fields in He I 10830 Å during a solar filament eruption. Astron Astrophys 640: A71. https://10.1051/0004-6361/202038408. [EDP Sciences] [Google Scholar]
  • Kuridze D, Henriques VMJ, Mathioudakis M, Rouppe van der Voort L, de la Cruz Rodrguez J, Carlsson M. 2018. Spectropolarimetric Inversions of the Ca II 8542 Å Line in an M-class Solar Flare. Astrophys J 860(1): 10. https://doi.org/10.3847/1538-4357/aac26d. [Google Scholar]
  • Kuridze D, Mathioudakis M, Morgan H, Oliver R, Kleint L, et al. 2019. Mapping the magnetic field of flare coronal loops. Astrophys J 874(2): 126. https://doi.org/10.3847/1538-4357/ab08e9. [Google Scholar]
  • Kusano K, Bamba Y, Yamamoto TT, Iida Y, Toriumi S, Asai A. 2012. Magnetic field structures triggering solar flares and coronal mass ejections. Astrophys J 760(1): 31. https://doi.org/10.1088/0004-637X/760/1/31. [Google Scholar]
  • Lagg A. 2007. Recent advances in measuring chromospheric magnetic fields in the He I 10830 Å line. Adv Space Res 39(11): 1734–1740. https://doi.org/10.1016/j.asr.2007.03.091. [Google Scholar]
  • Mackay DH, Yeates AR. 2012. The Sun’s global photospheric and coronal magnetic fields: Observations and models. Liv Rev Sol Phys 9(1): 6. https://doi.org/10.12942/lrsp-2012-6. [Google Scholar]
  • Martin SF. 1998. Filament Chirality: A Link Between Fine-Scale and Global Patterns (Review). In: IAU Colloq. 167: New perspectives on solar prominences, ASP Conference Series, Vol. 150, pp. 419–429. [Google Scholar]
  • Martinez Pillet V., Hill F., Hammel H.B., de Wijn A.G., Gosain S., et al. 2019. Synoptic studies of the sun as a key to understanding stellar astrospheres. In: Astro2020: Decadal survey on Astronomy and Astrophysics, APC white papers, no. 110, Bulletin of the American Astronomical Society, Vol. 51, p. 110. [Google Scholar]
  • Marubashi K, Akiyama S, Yashiro S, Gopalswamy N, Cho KS, Park YD. 2015. Geometrical relationship between interplanetary flux ropes and their solar sources. Sol Phys 290(5): 1371–1397. https://doi.org/10.1007/s11207-015-0681-4. [Google Scholar]
  • Möstl C, Amerstorfer T, Palmerio E, Isavnin A, Farrugia CJ, Lowder C, Winslow RM, Donnerer JM, Kilpua EKJ, Boakes PD. 2018. Forward modeling of coronal mass ejection flux ropes in the inner heliosphere with 3DCORE. Space Weather 16(3): 216–229. https://doi.org/10.1002/2017SW001735. [Google Scholar]
  • Palmerio E, Kilpua EKJ, James AW, Green LM, Pomoell J, Isavnin A, Valori G. 2017. Determining the intrinsic CME flux rope type using remote-sensing solar disk observations. Sol Phys 292(2): 39. https://doi.org/10.1007/s11207-017-1063-x. [Google Scholar]
  • Palmerio E, Kilpua EKJ, Möstl C, Bothmer V, James AW, Green LM, Isavnin A, Davies JA, Harrison RA. 2018. Coronal magnetic structure of Earthbound CMEs and in situ comparison. Space Weather 16(5): 442–460. https://doi.org/10.1002/2017SW001767. [Google Scholar]
  • Penn MJ. 2014. Infrared solar physics. Liv Rev Sol Phys 11(1): 2. https://doi.org/10.12942/lrsp-2014-2. [Google Scholar]
  • Sakurai T. 1998. Long-term monitoring studies of the Sun at the National Astronomical Observatory of Japan. In: Synoptic Solar Physics, ASP Conference Series, Vol. 140, pp. 483–495. [Google Scholar]
  • Sakurai T, Hanaoka Y, Arai T, Hagino M, Kawate T, et al. 2018. Infrared spectro-polarimeter on the Solar Flare Telescope at NAOJ/Mitaka. Publ Astron Soc Jpn 70(4): 58. https://doi.org/10.1093/pasj/psy050. [Google Scholar]
  • Sakurai T, Ichimoto K, Nishino Y, Shinoda K, Noguchi M, et al. 1995. Solar Flare Telescope at Mitaka. Publ Astron Soc Jpn 47: 81–92. [Google Scholar]
  • Schad TA, Penn MJ, Lin H, Judge PG. 2016. Vector magnetic field measurements along a cooled stereo-imaged coronal loop. Astrophys J 833(1): 5. https://doi.org/10.3847/0004-637X/833/1/5. [Google Scholar]
  • Steinegger M, Denker C, Goode PR, Marquette WH, Varsik J, et al. 2000. The new global high-resolution Hα network: First observations and first results. In: The solar cycle and terrestrial climate, solar and space weather, Wilson A (Ed.), Vol. 463 of ESA Special Publication, pp. 617–622. [Google Scholar]
  • Trujillo Bueno J, Landi Degl’Innocenti E, Collados M, Merenda L, Manso Sainz R. 2002. Selective absorption processes as the origin of puzzling spectral line polarization from the Sun. Nature 415(6870): 403–406. [Google Scholar]
  • Wang S, Jenkins JM, Martinez Pillet V, Beck C, Long DM, Prasad Choudhary D, Muglach K, McAteer J. 2020. Magnetic structure of an erupting filament. Astrophys J 892(2): 75. https://doi.org/10.3847/1538-4357/ab7380. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.