Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
Topical Issue - Scientific Advances from the European Commission H2020 projects on Space Weather
|
|
---|---|---|
Article Number | 42 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/swsc/2020043 | |
Published online | 22 September 2020 |
- Altadill D, Belehaki A, Blanch E, Borries C, Buresova D, Chum J, Galkin I, Haralambous H, Juan Zornoza JM, Kutiev I, Oikonomou C, Sanz Subirana J, Segarra A, Tsagouri I. 2019. Report on the design and specifications of the TID algorithms and products. https://doi.org/10.5281/zenodo.2590419. [Google Scholar]
- Altadill D, Segarra A, Blanch E, Juan JM, Paznukhov VV, Buresova D, Galkin I, Reinisch BW, Belehaki A. 2020a. A method for real-time identification and tracking of traveling ionospheric disturbances using ionosonde data: First results. J Space Weather Space Clim 10: 2. https://doi.org/10.1051/swsc/2019042. [CrossRef] [Google Scholar]
- Altadill D, Belehaki A, Blanch E, Buresova D, Tsagouri I, Juan Zornoza JM, Timoté C, Borries C, Galkin I, Haralambous H, Mielich J.. 2020b. Report on TID activity metrics. https://doi.org/10.5281/zenodo.3837357 [Google Scholar]
- Azeem I, Yue J, Hoffmann L, Miller SD, Straka WC III, Crowley G. 2015. Multisensor profiling of a concentric gravity wave event propagating from the troposphere to the ionosphere. Geophys Res Lett 42: 7874–7880. https://doi.org/10.1002/2015GL065903. [CrossRef] [Google Scholar]
- Balthazor RL, Moffett RJ. 1997. A study of atmospheric gravity waves and travelling ionospheric disturbances at equatorial latitudes. Ann. Geophys 15: 1048–1056. https://doi.org/10.1007/s00585-997-1048-4. [CrossRef] [Google Scholar]
- Belehaki A, Kutiev I, Marinov P, Tsagouri I, Koutroumbas K, Elias P. 2017. Ionospheric electron density perturbations during the 7–10 March 2012 geomagnetic storm period. Adv Space Res 59(4): 1041–1056. https://doi.org/10.1016/j.asr.2016.11.031. [CrossRef] [Google Scholar]
- Belehaki A, Reinisch B, Galkin I, Altadill D, Buresova D, Francis M, Mielich J, Paznukhov V, Stankov S. 2015. Pilot network for identification of travelling ionospheric disturbances. In: Proceedings of the 14th International Ionospheric Effects Symposium, pp. 284–291. http://ies2015.bc.edu/wp-content/uploads/2015/08/IES2015-Proceedings.pdf. [Google Scholar]
- Belehaki A, Tsagouri I. 2002. Investigation of the relative bottomside/topside contribution to the total electron content estimates. Ann Geophys 45(1): 73–86. https://doi.org/10.4401/ag-3498. [Google Scholar]
- Belehaki A, Tsagouri I, Kutiev I, Marinov P, Fidanova S. 2012. Upgrades to the topside sounders model assisted by Digisonde (TaD) and its validation at the topside ionosphere. J Space Weather Space Clim 2: A20. https://doi.org/10.1051/swsc/2012020. [CrossRef] [Google Scholar]
- Beley VS, Galushko VG, Yampolski YM. 1995. Traveling ionospheric disturbance diagnostics using HF signal trajectory parameter variations. Radio Sci 30(6): 1739–1752. https://doi.org/10.1029/95RS01992. [CrossRef] [Google Scholar]
- Borries C, Jakowski N, Kauristie K, Amm O, Mielich J, Kouba D. 2017. On the dynamics of large-scale travelling ionospheric disturbances over Europe on 20th November 2003. J Geophys Res 122: 1199–1211. https://doi.org/10.1002/2016JA023050. [CrossRef] [Google Scholar]
- Bowman GG, Mortimer IK. 2011. Some aspects of large-scale travelling ionospheric disturbances which originate at conjugate locations in auroral zones, cross the equator and sometimes encircle the Earth. Ann Geophys 29: 2203–2210. https://doi.org/10.5194/angeo-29-2203-2011. [CrossRef] [Google Scholar]
- Buresova D, Belehaki A, Tsagouri I, Watermann J, Galkin I, Altadill D, Blanch E, Chum J, Sindelarova T, Kouba D, Borries C, Habarulema JB, Katamzi Z, Haralambous H, Verhulst T, Mielich J. 2018. Report on methodology for the specification of additional parameters. https://doi.org/10.5281/zenodo.2555119. [Google Scholar]
- Chum J, Podolská K. 2018. 3D analysis of GW propagation in the ionosphere. Geophys Res Lett 45: 11562–11571. https://doi.org/10.1029/2018GL079695. [CrossRef] [Google Scholar]
- Ding F, Wam W, Liu L, Afraimovich EL, Voeykov SV, Perevalova NP. 2008. A statistical study of large-scale traveling ionospheric disturbances observed by GPS TEC during major magnetic storms over the years 2003–2005. J Geophys Res 113: A00A01. https://doi.org/10.1029/2008JA013037. [CrossRef] [Google Scholar]
- Figueiredo CAOB, Wrasse CM, Takahashi H, Otsuka Y, Shiokawa K, Barros D. 2017. Large-scale traveling ionospheric disturbances observed by GPS dTEC maps over North and South America on Saint Patrick’s Day storm in 2015. J Geophys Res Space Phys 122: 4755–4763. https://doi.org/10.1002/2016JA023417. [CrossRef] [Google Scholar]
- Francis SH. 1975. Global propagation of atmospheric gravity waves: A review. J Atmos Sol-Terr Phys 37(6–7): 1011–1054. https://doi.org/10.1016/0021-9169(75)90012-4. [CrossRef] [Google Scholar]
- Galkin IA, Reinisch BW, Huang X, Paznukhov VV. 2008. Uncertainty and Confidence of Ionospheric Specifications with the Digisonde ARTIST-5 Ionogram Autoscaler. In: Proc. IES-2008, Alexandria, VA, May 13–15, 2008, pp. 450–457 [Google Scholar]
- Guo J, Forbes JM, Wei F, Feng X, Liu H, Wan W, Yang Z, Liu C, Emery BA, Deng Y. 2015. Observations of a large-scale gravity wave propagating over an extremely large horizontal distance in the thermosphere. Geophys Res Lett 42: 6560–6565. https://doi.org/10.1002/2015GL065671. [CrossRef] [Google Scholar]
- Guo J, Liu H, Feng X, Wan W, Deng Y, Liu C. 2014. Constructive interference of large-scale gravity waves excited by interplanetary shock on 29 October 2003: CHAMP observation. J Geophys Res 119: 6846–6851. https://doi.org/10.1002/2014JA020255. [CrossRef] [Google Scholar]
- Habarulema JB, Katamzi ZT, Yizengaw E. 2015. First observations of poleward large-scale traveling ionospheric disturbances over the African sector during geomagnetic storm conditions. J Geophys Res 120: 6914–6929. https://doi.org/10.1002/2015JA021066. [CrossRef] [Google Scholar]
- Habarulema JB, Katamzi ZT, Yizengaw E, Yamazaki Y, Seemala G. 2016. Simultaneous stormtime equatorward and poleward large-scale TIDs on a global scale. Geophys Res Lett 43: 6678–6686. https://doi.org/10.1002/2016GL069740. [CrossRef] [Google Scholar]
- Habarulema JB, Yizengaw E, Katamzi-Joseph ZT, Moldwin MB, Buchert S. 2018. Storm time global observations of large-scale TIDs from ground-based and in situ satellite measurements. J Geophys Res 123: 711–724. https://doi.org/10.1002/2017JA024510. [CrossRef] [Google Scholar]
- Haldoupis C, Meek C, Christakis N, Pancheva D, Bourdillon A. 2006. Ionogram height–time–intensity observations of descending sporadic E layers at mid-latitude. J Atmos Sol-Terr Phys 68: 539–557. https://doi.org/10.1016/j.jastp.2005.03.020. [CrossRef] [Google Scholar]
- Hernández-Pajares M, Juan JM, Sanz J. 2006. Medium scale traveling disturbances affecting GPS measurements: Spatial and temporal analysis. JGR 111: A07–S11. https://doi.org/10.1029/2005JA011474. [CrossRef] [Google Scholar]
- Hocke K, Schlegel K. 1996. A review of atmospheric gravity waves and travelling ionospheric disturbances. Ann Geophys 14(917): 1996. https://doi.org/10.1007/s00585-996-0917-6. [Google Scholar]
- Hooke WH. 1968. Ionospheric irregularities produced by internal atmospheric gravity waves. J Atmos Sol-Terr Phys 30: 795–823. https://doi.org/10.1016/S0021-9169(68)80033-9. [CrossRef] [Google Scholar]
- Huang X, Reinisch BW, Sales GS, Paznukhov VV, Galkin IA. 2016. Comparing TID simulations using 3-D ray tracing and mirror reflection. Radio Sci 51: 337–343. https://doi.org/10.1002/2015RS005872. [CrossRef] [Google Scholar]
- Hunsucker RD. 1982. Atmospheric gravity waves generated in the high-latitude ionoshpere: A review. Rev Geophys Space Phys 20(2): 293–315. https://doi.org/10.1029/RG020i002p00293. [CrossRef] [Google Scholar]
- Jayachandran B, Balan N, Nampoothiri SP, Rao PB. 1987. HF Doppler observations of vertical plasma drifts in the evening F region at the equator. J Geophys Res 92(A10): 11253–11256. https://doi.org/10.1029/JA092iA10p11253. [CrossRef] [Google Scholar]
- Juan JM, Sanz J, González-Casado G, Timoté C, Tölle J, Magdaleno S, Rupiewicz J, Mielich J. 2019. Statistical analysis of the results: Assessment of the impact on aerospace and ground systems. https://doi.org/10.5281/zenodo.3453687. [Google Scholar]
- Juan JM, Sanz J, Rovira-Garcia A, González-Casado G, Ibáñez D, Orus Perez R. 2018. AATR an ionospheric activity indicator specifically based on GNSS measurements. J Space Weather Space Clim 8(2018): A14. https://doi.org/10.1051/swsc/2017044. [CrossRef] [Google Scholar]
- Kutiev I, Marinov P, Belehaki A. 2016. Real time 3-D electron density reconstruction over Europe by using TaD profiler. Radio Sci 51: 1176–1187. https://doi.org/10.1002/2015RS005932. [CrossRef] [Google Scholar]
- Kutiev I, Marinov P, Fidanova S, Belehaki A, Tsagouri I. 2012. Adjustments of the TaD electron density reconstruction model with GNSS TEC parameters for operational application purposes. J Space Weather Space Clim 2: A21. https://doi.org/10.1051/swsc/2012021. [CrossRef] [Google Scholar]
- Kutiev I, Marinov P, Watanabe S. 2006. Model of topside ionosphere scale height based on topside sounder data. Adv Space Res 37(5): 943–950. https://doi.org/10.1016/j.asr.2005.11.021. [CrossRef] [Google Scholar]
- Lastovicka J. 2006. Forcing of the ionosphere by waves from below. J Atmos Sol-Terr Phys 68: 479–497. https://doi.org/10.1016/j.jastp.2005.01.018. [CrossRef] [Google Scholar]
- Lastovicka J, Chum J. 2017. A review of results of the international ionospheric Doppler sounder network. Adv Space Res 60(8): 1629–1643. https://doi.org/10.1016/j.asr.2017.01.032. [CrossRef] [Google Scholar]
- Mayr HG, Harris I, Herrero FA, Spencer NW, Varosi F, Pesnell WD. 1990. Thermospheric gravity waves - Observations and interpretation using the transfer function model (TFM). Space Sci Rev 54: 297–375. https://doi.org/10.1007/BF00177800. [Google Scholar]
- Mevius M, van der Tol S, Pandey VN, Vedantham HK, Brentjens MA, et al. 2016. Probing ionospheric structures using the LOFAR radio telescope. Radio Sci. 51: 927–941. https://doi.org/10.1002/2016RS006028. [NASA ADS] [CrossRef] [Google Scholar]
- Millward GH, Moffett RJ, Quegan S, Fuller-Rowell TJ. 1996. A coupled thermosphere-ionosphere-plasmasphere model CTIP. In: STEP handbook on ionospheric models, Schunk RW (Ed.), Utah State University, Logan, UT, p. 239. [Google Scholar]
- Morgan MG, Ballard KA. 1978. The height dependence of wave-normal depression and disturbance amplitude in TID’s. J Geophys Res 83(A12): 5741–5744. https://doi.org/10.1029/JA083iA12p05741. [CrossRef] [Google Scholar]
- Nickisch LJ, Fridman S, Hausman M, San Antonio GS. 2016. Feasibility study for reconstructing the spatial temporal structure of TIDs from high resolution backscatter ionograms. Radio Sci 51: 443–453. https://doi.org/10.1002/2015RS005906. [CrossRef] [Google Scholar]
- Paznukhov VV, Galushko VG, Reinisch BW. 2012. Digisonde observations of AGWs/TIDs with frequency and angular sounding technique. Adv Space Res 49(4): 700–710. https://doi.org/10.1016/j.asr.2011.11.012. [CrossRef] [Google Scholar]
- Pintor P, Roldán R, Gomez J, de La Casa C, Fidalgo RM. 2015. The impact of the high ionospheric activity in the EGNOS performance. Coord Mag XI(3), 20–28. [Google Scholar]
- Pradipta R, Valladares CE, Carter BA, Doherty PH. 2016. Interhemispheric propagation and interactions of auroral traveling ionospheric disturbances near the equator. J Geophys Res Space Phys 121: 2462–2474. https://doi.org/10.1002/2015JA022043. [CrossRef] [Google Scholar]
- Reinisch B, Galkin I, Belehaki A, Paznukhov V, Huang X, et al. 2018. Pilot ionosonde network for identification of traveling ionospheric disturbances. Radio Sci 53: 365–378. https://doi.org/10.1002/2017RS006263. [CrossRef] [Google Scholar]
- Ross W. 1947. The estimation of the probable accuracy of high frequency radio direction-finding bearings. J IEE 94(Part III): 722–726. https://doi.org/10.1049/ji-3a-2.1947.0092. [Google Scholar]
- Sanz J, Juan JM, González-Casado G, Prieto-Cerdeira R, Schlueter S, Orús R. 2014. Novel ionospheric activity indicator specifically tailored for GNSS users. In: Proceedings of ION GNSS+ 2014. Tampa, Florida (USA), pp. 1173–1182. http://www.ion.org/publications/abstract.cfm?jp=p&articleID=12269. [Google Scholar]
- Sauli P, Boska J. 2001. Tropospheric events and possible related gravity wave activity effects on the ionosphere. J Atmos Sol-Terr Phys 63: 945–950. [CrossRef] [Google Scholar]
- Savastano G, Komjathy A, Verkhoglyadova O, Mazzoni A, Crespi M, Wei Y, Mannucci AJ. 2017. Real-time detection of tsunami ionospheric disturbances with a stand-alone GNSS receiver: A preliminary feasibility demonstration. Sci Rep 7: 46607. https://doi.org/10.1038/srep46607. [CrossRef] [Google Scholar]
- Tsagouri I, Belehaki A, Koutroumbas K. 2018a. Models for the specification of ionospheric background, Zenodo. https://doi.org/10.5281/zenodo.3929555. [Google Scholar]
- Tsagouri I, Goncharenko L, Shim JS, Belehaki A, Buresova D, Kuznetsova MM. 2018b. Assessment of current capabilities in modeling the ionospheric climatology for space weather applications: foF2 and hmF2. Space Weather 16: 1930–1945. https://doi.org/10.1029/2018SW002035. [CrossRef] [Google Scholar]
- Tsagouri I, Koutroumbas K, Belehaki A. 2009. Ionospheric foF2 forecast over Europe based on an autoregressive modeling technique driven by solar wind parameters. Radio Sci 44: RS0A35. https://doi.org/10.1029/2008RS004112. [CrossRef] [Google Scholar]
- Tsagouri I, Koutroumbas K, Elias P. 2018c. A new short-term forecasting model for the total electron content storm time disturbances. J Space Weather Space Clim 8: A33. https://doi.org/10.1051/swsc/2018019. [CrossRef] [Google Scholar]
- Tsugawa T, Saito A. 2004. A statistical study of large-scale traveling ionospheric disturbances using the GPS network in Japan. J Geophys Res 109: A06302. https://doi.org/10.1029/2003JA010302. [CrossRef] [Google Scholar]
- Watermann J. 2020. Methodology for the identification of the interhemispheric circulation (version 1.2). TechTIDE Project Report. https://doi.org/10.5281/zenodo.4019014. [Google Scholar]
- Xiao Z, Xiao SG, Hao YQ, Zhang DH. 2007. Morphological features of ionospheric response to typhoon. J Geophys Res 112: A04304. https://doi.org/10.1029/2006JA011671. [CrossRef] [Google Scholar]
- Zhang S-R, Coster AJ, Erickson PJ, Goncharenko LP, Rideout W, Vierinen J. 2019. Traveling ionospheric disturbances and ionospheric perturbations associated with solar flares in September 2017. J Geophys Res Space Phys 124: 5894–5917. https://doi.org/10.1029/2019JA026585. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.