Issue |
J. Space Weather Space Clim.
Volume 10, 2020
Topical Issue - Space climate: The past and future of solar activity
|
|
---|---|---|
Article Number | 45 | |
Number of page(s) | 17 | |
DOI | https://doi.org/10.1051/swsc/2020047 | |
Published online | 30 September 2020 |
- Alterman BL, Kasper JC, Leamon RJ, McIntosh SW. 2020. Helium abundance heralds the onset of solar cycle 25. arXiv:2006.04669 [astro-ph, physics:physics]. http://adsabs.harvard.edu/abs/2020arXiv200604669A. [Google Scholar]
- Ball WT, Unruh YC, Krivova NA, Solanki S, Harder JW. 2011. Solar irradiance variability: a six-year comparison between SORCE observations and the SATIRE model. A&A 530: 71. https://doi.org/10.1051/0004-6361/201016189. [Google Scholar]
- Bolduc C, Charbonneau P, Dumoulin V, Bourqui MS, Crouch AD. 2012. A fast model for the reconstruction of spectral solar irradiance in the near- and mid-ultraviolet. Sol Phys 279: 383–409. https://doi.org/10.1007/s11207-012-0019-4. [CrossRef] [Google Scholar]
- Brandt PN, Steinegger M. 1998. On the determination of the quiet-sun center-to-limb variation in Ca II K spectroheliograms. Sol Phys 177(1–2): 287–294. https://doi.org/10.1023/A:1004953032251. [NASA ADS] [CrossRef] [Google Scholar]
- Chapman GA, Cookson AM, Preminger DG. 2012. Comparison of TSI from SORCE TIM with SFO Ground-Based Photometry. Sol Phys 276: 35–41. https://doi.org/10.1007/s11207-011-9867-6. [CrossRef] [Google Scholar]
- Chapman GA, Cookson AM, Preminger DG. 2013. Modeling total solar irradiance with San Fernando observatory ground-based photometry: Comparison with ACRIM, PMOD, and RMIB composites. Sol Phys 283: 295–305. https://doi.org/10.1007/s11207-013-0233-8. [NASA ADS] [CrossRef] [Google Scholar]
- Chatzistergos, T. 2017. Analysis of historical solar observations and long-term changes in solar irradiance. PhD thesis. Uni-edition. ISBN 978-3-944072-55-5. https://ui.adsabs.harvard.edu/abs/2017PhDT....259C. [Google Scholar]
- Chatzistergos T, Ermolli I, Solanki SK, Krivova NA. 2016. Exploiting four historical Ca II K spectroheliogram archives. In: Coimbra solar physics meeting ground-based solar observations in the space instrumentation era, Dorotovic I, Fischer CE, Temmer M (Eds.), , vol. 504 of Astronomical Society of the Pacific Conference Series, San Francisco, pp. 227–237. ISBN 978-1-58381-892-3. http://www.aspbooks.org/a/volumes/article_details?paper_id=37741. [Google Scholar]
- Chatzistergos T, Ermolli I, Krivova NA, Solanki SK. 2018a. Ca II K spectroheliograms for studies of long-term changes in solar irradiance. In: Long-term datasets for the understanding of solar and stellar magnetic cycles, Banerjee D, Jiang J, Kusano K, Solanki S (Eds.), Vol. 340 of IAU Symposium, Cambridge University Press, Cambridge, UK, pp. 125–128. https://doi.org/10.1017/S1743921318001825 [Google Scholar]
- Chatzistergos T, Ermolli I, Solanki SK, Krivova NA. 2018b. Analysis of full disc Ca II K spectroheliograms – I. Photometric calibration and centre-to-limb variation compensation. A&A 609: A92. https://doi.org/10.1051/0004-6361/201731511. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Chatzistergos T, Ermolli I, Falco M, Giorgi F, Guglielmino SL, Krivova NA, Romano P, Solanki SK. 2019a. Historical solar Ca II K observations at the Rome and Catania observatories. Il Nuovo Cimento 42C: 5. https://doi.org/10.1393/ncc/i2019-19005-2. [Google Scholar]
- Chatzistergos T, Ermolli I, Krivova NA, Solanki SK. 2019b. Analysis of full disc Ca II K spectroheliograms – II. Towards an accurate assessment of long-term variations in plage areas. A&A 625: A69. https://doi.org/10.1051/0004-6361/201834402. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Chatzistergos T, Ermolli I, Solanki SK, Krivova NA, Banerjee D, Jha BK, Chatterjee S. 2019c. Delving into the historical Ca II K archive from the Kodaikanal Observatory: The potential of the most recent digitized series. Sol Phys 294(10): 145. https://doi.org/10.1007/s11207-019-1532-5. [CrossRef] [Google Scholar]
- Chatzistergos T, Ermolli I, Krivova NA, Solanki SK. 2020a. Historical solar Ca II K observations at the Kyoto and Sacramento Peak observatories. J Phy Conf Ser 1548: 012007. https://doi.org/10.1088/1742-6596/1548/1/012007. [CrossRef] [Google Scholar]
- Chatzistergos T, Ermolli I, Krivova NA, Solanki SK, Banerjee D, et al. 2020b. Analysis of full-disc Ca II K spectroheliograms – III Plage area composite series covering 1892–2019. A&A 639: A88. https://doi.org/10.1051/0004-6361/202037746. [CrossRef] [EDP Sciences] [Google Scholar]
- Choudhary DP, Cadavid AC, Cookson A, Chapman GA. 2020. Variability in irradiance and photometric indices during the last two solar cycles. Sol Phys 295(2): 15. https://doi.org/10.1007/s11207-019-1559-7. [CrossRef] [Google Scholar]
- Crouch AD, Charbonneau P, Beaubien G, Paquin-Ricard D. 2008. A Model for the total solar irradiance based on active region decay. Astrophys J 677: 723–741. https://doi.org/10.1086/527433. [NASA ADS] [CrossRef] [Google Scholar]
- Dewitte S, Crommelynck D, Joukoff A. 2004. Total solar irradiance observations from DIARAD/VIRGO. J Geophys Res (Space Phys) 109(A02): 102. https://doi.org/10.1029/2002JA009694. [Google Scholar]
- Dewitte S, Nevens S. 2016. The total solar irradiance climate data record. Astrophys J 830: 25. https://doi.org/10.3847/0004-637X/830/1/25. [CrossRef] [Google Scholar]
- Domingo V, Ermolli I, Fox P, Fröhlich C, Haberreiter M, et al. 2009. Solar surface magnetism and irradiance on time scales from days to the 11-year cycle. Space Sci Rev 145(3–4): 337–380. https://doi.org/10.1007/s11214-009-9562-1. [NASA ADS] [CrossRef] [Google Scholar]
- Dudok de Wit T, Kopp G, Fröhlich C, Schöll M. 2017. Methodology to create a new total solar irradiance record: Making a composite out of multiple data records. Geophys Res Lett 44: 1196–1203. https://doi.org/10.1002/2016GL071866. [CrossRef] [Google Scholar]
- Egorova T, Schmutz W, Rozanov E, Shapiro AI, Usoskin I, Beer J, Tagirov RV, Peter T. 2018. Revised historical solar irradiance forcing. A&A 615: A85. https://doi.org/10.1051/0004-6361/201731199. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Ermolli I. 2001. Modelling solar irradiance variations from PSPT full-disk images. Mem Soc Astron Ital 72:545–548. http://adsabs.harvard.edu/abs/2001MmSAI.72.545E. [Google Scholar]
- Ermolli I, Criscuoli S, Centrone M, Giorgi F, Penza V. 2007. Photometric properties of facular features over the activity cycle. A&A 465: 305–314. https://doi.org/10.1051/0004-6361:20065995. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Ermolli I, Criscuoli S, Giorgi F. 2011. Recent results from optical synoptic observations of the solar atmosphere with ground-based instruments. Contrib Astron Obs Skaln Pleso 41: 73–84. http://adsabs.harvard.edu/abs/2011CoSka..41...73E. [Google Scholar]
- Ermolli I, Fofi M, Torelli M, Reardon K. 1998. The RISE-PSPT telescope operative at the OAR. Mem Soc Astron Ital 69: 631. [Google Scholar]
- Ermolli I, Matthes K, Dudok de Wit T, Krivova NA, Tourpali K, et al. 2013. Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos Chem Phys 13: 3945–3977. https://doi.org/10.5194/acp-13-3945-2013. [Google Scholar]
- Fligge M, Solanki SK, Unruh YC. 2000. Modelling short-term spectral irradiance variations. Space Sci Rev 94: 139–144. http://adsabs.harvard.edu/abs/2000SSRv...94..139F. [Google Scholar]
- Floyd LE, Cook JW, Herring LC, Crane PC. 2003. SUSIM’S 11-year observational record of the solar UV irradiance. Adv Space Res 31: 2111–2120. https://doi.org/10.1016/S0273-1177(03)00148-0. [NASA ADS] [CrossRef] [Google Scholar]
- Fontenla JM, Harder J, Livingston W, Snow M, Woods T. 2011. High-resolution solar spectral irradiance from extreme ultraviolet to far infrared. J Geophys Res (Atmos) 116(20): 108. https://doi.org/10.1029/2011JD016032. [CrossRef] [Google Scholar]
- Fontenla JM, Landi E. 2018. Bright network, UVA, and the physical modeling of solar spectral and total irradiance in recent solar cycles. Astrophys J 861(2): 120. https://doi.org/10.3847/1538-4357/aac388. [Google Scholar]
- Fröhlich C. 2006. Solar irradiance variability since 1978. Revision of the PMOD composite during solar cycle 21. Space Sci Rev 125: 53–65. https://doi.org/10.1007/s11214-006-9046-5. [NASA ADS] [CrossRef] [Google Scholar]
- Fröhlich C, Crommelynck DA, Wehrli C, Anklin M, Dewitte S, Fichot A, Finsterle W, Jiménez A, Chevalier A, Roth H. 1997. In-flight performance of the virgo solar irradiance instruments on soho. Sol Phys 175(2): 267–286. https://doi.org/10.1023/A:1004929108864. [Google Scholar]
- Georgieva K, Nagovitsyn Y, Kirov B. 2015. Reconstruction of the long term variations of the total solar irradiance from geomagnetic data. Geomagn Aeron 55: 1026–1032. https://doi.org/10.1134/S0016793215080095. [CrossRef] [Google Scholar]
- Haberreiter M, Schöll M, Dudok de Wit T, Kretzschmar M, Misios S, Tourpali K, Schmutz W. 2017. A new observational solar irradiance composite. J Geophys Res (Space Phys) 122: 5910–5930. https://doi.org/10.1002/2016JA023492. [CrossRef] [Google Scholar]
- Harder JW, Fontenla JM, Pilewskie P, Richard EC, Woods TN. 2009. Trends in solar spectral irradiance variability in the visible and infrared. Geophys Res Lett 36(7): L0780. https://doi.org/10.1029/2008GL036797. [Google Scholar]
- Hathaway DH. 2015. The solar cycle. Living Rev Sol Phys 12: 4. https://doi.org/10.1007/lrsp-2015-4. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Hudson HS, Silva S, Woodard M, Willson RC. 1982. The effects of sunspots on solar irradiance. Sol Phys 76: 211–219. https://doi.org/10.1007/BF00170984. [Google Scholar]
- Judge PG, Egeland R, Henry GW. 2020. Sun-like stars shed light on solar climate forcing. Astrophys J 891(1): 96. https://doi.org/10.3847/1538-4357/ab72a9. [CrossRef] [Google Scholar]
- Judge PG, Lockwood GW, Radick RR, Henry GW, Shapiro AI, Schmutz W, Lindsey C. 2012. Confronting a solar irradiance reconstruction with solar and stellar data. A&A 544: A88. https://doi.org/10.1051/0004-6361/201218903. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Kopp G. 2016. Magnitudes and timescales of total solar irradiance variability. J Space Weather Space Clim 6: A30. https://doi.org/10.1051/swsc/2016025. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Kopp G, Lawrence G. 2005. The Total Irradiance Monitor (TIM): Instrument design. Sol Phys 230(1): 91–109. https://doi.org/10.1007/s11207-005-7446-4 [NASA ADS] [CrossRef] [Google Scholar]
- Krivova NA, Solanki SK, Fligge M, Unruh YC. 2003. Reconstruction of solar irradiance variations in cycle 23: Is solar surface magnetism the cause? A&A 399: L1–L4. https://doi.org/10.1051/0004-6361:20030029. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Krivova NA, Solanki SK, Floyd L. 2006. Reconstruction of solar UV irradiance in cycle 23. A&A 452: 631–639. https://doi.org/10.1051/0004-6361:20064809. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Krivova NA, Balmaceda L, Solanki SK. 2007. Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. A&A 467: 335–346. https://doi.org/10.1051/0004-6361:20066725. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Krivova NA, Vieira LEA, Solanki SK. 2010. Reconstruction of solar spectral irradiance since the Maunder minimum. J Geophys Res (Space Phys) 115: 12112. https://doi.org/10.1029/2010JA015431. [CrossRef] [Google Scholar]
- Lean JL. 2018. Estimating solar irradiance since 850 CE. Earth Space Sci 5(4): 133–149. https://doi.org/10.1002/2017EA000357. [CrossRef] [Google Scholar]
- Lockwood M, Ball WT. 2020. Placing limits on long-term variations in quiet-Sun irradiance and their contribution to total solar irradiance and solar radiative forcing of climate. Proc R Soc Lond Ser A Math Phys Eng Sci 476(2238): 20200077. https://doi.org/10.1098/rspa.2020.0077. [Google Scholar]
- Malherbe J-M, Dalmasse K. 2019. The new 2018 version of the meudon spectroheliograph. Sol Phys 294(5): 52. https://doi.org/10.1007/s11207-019-1441-7. [CrossRef] [Google Scholar]
- Mauceri S, Pilewskie P, Richard E, Coddington O, Harder J, Woods T. 2018. Revision of the sun’s spectral irradiance as measured by SORCE SIM. Sol Phys 293(12): 161. https://doi.org/10.1007/s11207-018-1379-1 [CrossRef] [Google Scholar]
- Mauceri S, Coddington O, Lyles D, Pilewskie P. 2019. Neural network for solar irradiance modeling (NN-SIM). Sol Phy 294(11): 160. https://doi.org/10.1007/s11207-019-1555-y. [CrossRef] [Google Scholar]
- Mauceri S, Pilewskie P, Woods T, Béland S, Richard E. 2020. Intercomparing solar spectral irradiance from SORCE SIM. Earth Space Sci 7: e01002. https://doi.org/10.1029/2019EA001002. [CrossRef] [Google Scholar]
- Nesme-Ribes E, Meunier N, Collin B. 1996. Fractal analysis of magnetic patterns from Meudon spectroheliograms. A&A 308: 213–218. http://cdsads.u-strasbg.fr/abs/1996A%26A...308..213N. [Google Scholar]
- Pal PS, Verma M, Rendtel J, Manrique SJG, Enke H, Denker C. 2020. Solar observatory Einstein Tower: Data release of the digitized solar full-disk photographic plate archive. Astron Nachr 341: 1–13. https://doi.org/10.1002/asna.202013791. [CrossRef] [Google Scholar]
- Peck CL, Rast MP. 2015. Photometric trends in the visible solar continuum and their sensitivity to the center-to-limb profile. Astrophys J 808: 192. https://doi.org/10.1088/0004-637X/808/2/192. [NASA ADS] [CrossRef] [Google Scholar]
- Preminger DG, Chapman GA, Cookson AM. 2011. Activity-brightness correlations for the sun and sun-like stars. Astrophys J Lett 739: L45. https://doi.org/10.1088/2041-8205/739/2/L45. [NASA ADS] [CrossRef] [Google Scholar]
- Preminger DG, Walton SR, Chapman GA. 2002. Photometric quantities for solar irradiance modeling. J Geophys Res (Space Phys) 107: 1354. https://doi.org/10.1029/2001JA009169. [NASA ADS] [CrossRef] [Google Scholar]
- Puiu CC. 2019. Modeling solar irradiance variations on timescales from day to solar cycle with ground-based observations. Master’s thesis. Sapienza – University of Rome, Rome. [Google Scholar]
- Rottman GJ, Woods TN, McClintock W. 2006. SORCE solar UV irradiance results. Adv Space Res 37(2): 201–208. https://doi.org/10.1016/j.asr.2005.02.072. [NASA ADS] [CrossRef] [Google Scholar]
- Shapiro AI, Schmutz W, Rozanov E, Schoell M, Haberreiter M, Shapiro AV, Nyeki S. 2011. A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing. A&A 529: 67. https://doi.org/10.1051/0004-6361/201016173. [Google Scholar]
- Shapiro AI, Schmutz W, Schoell M, Haberreiter M, Rozanov E. 2010. NLTE solar irradiance modeling with the COSI code. A&A 517: A48. https://doi.org/10.1051/0004-6361/200913987. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Shapiro AI, Solanki SK, Krivova NA, Cameron RH, Yeo KL, Schmutz WK. 2017. The nature of solar brightness variations. Nat Astron 1: 612–616. https://doi.org/10.1038/s41550-017-0217-y. [Google Scholar]
- Skumanich A, Lean JL, Livingston WC, White OR. 1984. The sun as a star – Three-component analysis of chromospheric variability in the calcium K line. Astrophys J 282: 776–783. https://doi.org/10.1086/162262. [NASA ADS] [CrossRef] [Google Scholar]
- Steinhilber F, Beer J, Fröhlich C. 2009. Total solar irradiance during the Holocene. Geophys Res Lett 36: L19704. https://doi.org/10.1029/2009GL040142. [NASA ADS] [CrossRef] [Google Scholar]
- Tapping KF, Boteler D, Charbonneau P, Crouch A, Manson A, Paquette H. 2007. Solar magnetic activity and total irradiance since the maunder minimum. Sol Phys 246: 309–326. https://doi.org/10.1007/s11207-007-9047-x. [NASA ADS] [CrossRef] [Google Scholar]
- Tebabal A, Damtie B, Nigussie M, Bires A, Yizengaw E. 2015. Modeling total solar irradiance from PMOD composite using feed-forward neural networks. J Atmos Sol-Terr Phys 135: 64–71. https://doi.org/10.1016/j.jastp.2015.10.007. [NASA ADS] [CrossRef] [Google Scholar]
- Unruh YC, Solanki SK, Fligge M. 1999. The spectral dependence of facular contrast and solar irradiance variations. A&A 345: 635–642. http://adsabs.harvard.edu/abs/1999A%26A...345..635U. [Google Scholar]
- Unruh YC, Ball WT, Krivova NA. 2012. Solar irradiance models and measurements: A comparison in the 220–240 nm wavelength band. Surv Geophys 33: 475–481. https://doi.org/10.1007/s10712-011-9166-7. [NASA ADS] [CrossRef] [Google Scholar]
- Vieira LEA, Solanki SK, Krivova NA, Usoskin I. 2011. Evolution of the solar irradiance during the Holocene. A&A 531: 6. https://doi.org/10.1051/0004-6361/201015843. [Google Scholar]
- Walton SR, Chapman GA, Cookson AM, Dobias JJ, Preminger DG. 1998. Processing photometric full-disk solar images. Sol Phys 179: 31–42. https://doi.org/10.1023/A:1005070932205. [NASA ADS] [CrossRef] [Google Scholar]
- Wang Y-M, Lean JL, Sheeley NR Jr. 2005. Modeling the Sun’s magnetic field and irradiance since 1713. Astrophys J 625: 522–538. https://doi.org/10.1086/429689. [NASA ADS] [CrossRef] [Google Scholar]
- Wehrli C, Schmutz W, Shapiro AI. 2013. Correlation of spectral solar irradiance with solar activity as measured by VIRGO. A&A 556: L3. https://doi.org/10.1051/0004-6361/201220864. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Willis DM, Wild MN, Appleby GM, Macdonald LT. 2016. The greenwich photo-heliographic results (1874–1885): Observing telescopes, photographic processes, and solar images. Sol Phys 291(9–10): 2553–2586. https://doi.org/10.1007/s11207-016-0894-1. [CrossRef] [Google Scholar]
- Willson RC. 1997. Total solar irradiance trend during solar cycles 21 and 22. Science 277: 1963–1965. https://doi.org/10.1126/science.277.5334.1963. [NASA ADS] [CrossRef] [Google Scholar]
- Woods TN, Eparvier FG, Harder J, Snow M. 2018. Decoupling solar variability and instrument trends using the Multiple Same-Irradiance-Level (MuSIL) analysis technique. Sol Phys 293: 76. https://doi.org/10.1007/s11207-018-1294-5. [Google Scholar]
- Worden JR, White OR, Woods TN. 1998. Evolution of chromospheric structures derived from Ca II K spectroheliograms: Implications for solar ultraviolet irradiance variability. Astrophys J 496: 998. https://doi.org/10.1086/305392. [NASA ADS] [CrossRef] [Google Scholar]
- Wu C-J, Krivova NA, Solanki SK, Usoskin IG. 2018. Solar total and spectral irradiance reconstruction over the last 9000 years. A&A 620: A120. https://doi.org/10.1051/0004-6361/201832956. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Yeo KL, Krivova NA, Solanki SK, Glassmeier KH. 2014. Reconstruction of total and spectral solar irradiance from 1974 to 2013 based on KPVT, SoHO/MDI, and SDO/HMI observations. A&A 570: A85. https://doi.org/10.1051/0004-6361/201423628. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Yeo KL, Krivova NA, Solanki SK. 2017a. EMPIRE: A robust empirical reconstruction of solar irradiance variability. J Geophys Res (Space Phys) 122: 3888–3914. https://doi.org/10.1002/2016JA023733. [Google Scholar]
- Yeo KL, Solanki SK, Norris CM, Beeck B, Unruh YC, Krivova NA. 2017b. Solar irradiance variability is caused by the magnetic activity on the solar surface. Phys Rev Letters 119: 091102. https://doi.org/10.1103/PhysRevLett.119.091102. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.