Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
|
|
---|---|---|
Article Number | 44 | |
Number of page(s) | 23 | |
DOI | https://doi.org/10.1051/swsc/2020048 | |
Published online | 25 September 2020 |
- Bale SD, Badman ST, Bonnell JW, Bowen TA, Burgess D, et al. 2019. Highly structured slow solar wind emerging from an equatorial coronal hole. Nature 576(7786): 237–242. https://doi.org/10.1038/s41586-019-1818-7. [NASA ADS] [CrossRef] [Google Scholar]
- Balogh A, Beek TJ, Forsyth RJ, Hedgecock PC, Marquedant RJ, Smith EJ, Southwood DJ, Tsurutani BT. 1992. The magnetic field investigation on the ULYSSES mission – Instrumentation and preliminary scientific results. Astron Astrophys Suppl 92: 221–236. [Google Scholar]
- Bame SJ, McComas DJ, Barraclough BL, Phillips JL, Sofaly KJ, Chavez JC, Goldstein BE, Sakurai RK. 1992. The ULYSSES solar wind plasma experiment. Astron Astrophys Suppl 92: 237–265. [Google Scholar]
- Bauer P, Thorpe A, Brunet G. 2015. The quiet revolution of numerical weather prediction. Nature 525: 47–55. https://doi.org/10.1038/nature14956. [CrossRef] [PubMed] [Google Scholar]
- Borovsky JE, Denton MH. 2006. Differences between CME-driven storms and CIR-driven storms. J Geophys Res (Space Phys) 111: A07S08. https://doi.org/10.1029/2005JA011447. [Google Scholar]
- Broiles TW, Desai MI, Lee CO, MacNeice PJ. 2013. Radial evolution of the three-dimensional structure in CIRs between Earth and Ulysses. J Geophys Res (Space Phys) 118: 4776–4792. https://doi.org/10.1002/jgra.50482. [CrossRef] [Google Scholar]
- Casati B, Wilson LJ, Stephenson DB, Nurmi P, Ghelli A, Pocernich M, Damrath U, Ebert EE, Brown BG, Mason S. 2008. Forecast verification: current status and future directions. Meteorol Appl 15: 3–18. https://doi.org/10.1002/met.52. [CrossRef] [Google Scholar]
- Chen G-M, Xu J, Wang W, Burns AG. 2014. A comparison of the effects of CIR- and CME-induced geomagnetic activity on thermospheric densities and spacecraft orbits: Statistical studies. J Geophys Res (Space Phys) 119: 7928–7939. https://doi.org/10.1002/2014JA019831. [CrossRef] [Google Scholar]
- Cranmer SR, Gibson SE, Riley P. 2017. Origins of the ambient solar wind: implications for space weather. Space Sci Rev 212: 1345–1384. https://doi.org/10.1007/s11214-017-0416-y. [NASA ADS] [CrossRef] [Google Scholar]
- Eastwood JP, Nakamura R, Turc L, Mejnertsen L, Hesse M. 2017. The scientific foundations of forecasting magnetospheric space weather. Space Sci Rev 212: 1221–1252. https://doi.org/10.1007/s11214-017-0399-8. [CrossRef] [Google Scholar]
- Ebert E, Wilson L, Weigel A, Mittermaier M, Nurmi P, et al. 2013. Progress and challenges in forecast verification. Meteorol Appl 20: 130–139. https://doi.org/10.1002/met.1392. [CrossRef] [Google Scholar]
- Feng XS. 2020. Magnetohydrodynamic modeling of the solar corona and heliosphere, Springer, Singapore. ISBN 978-981-13-9081-4. https://doi.org/10.1007/978-981-13-9081-4. [CrossRef] [Google Scholar]
- Feng XS, Jiang CW, Xiang CQ, Zhao XH, Wu ST. 2012. A data-driven model for the global coronal evolution. Astrophys J 758: 62. https://doi.org/10.1088/0004-637X/758/1/62. [NASA ADS] [CrossRef] [Google Scholar]
- Feng XS, Li CX, Xiang CQ, Zhang M, Li HC, Wei FS. 2017. Data-driven modeling of the solar corona by a new three-dimensional path-conservative Osher-Solomon MHD model. Astrophys J Suppl Ser 233(1): 10. https://doi.org/10.3847/1538-4365/aa957a. [CrossRef] [Google Scholar]
- Feng XS, Ma XP, Xiang CQ. 2015. Data-driven modeling of the solar wind from 1 Rs to 1 AU. J Geophys Res (Space Phys) 120: 10. https://doi.org/10.1002/2015JA021911. [Google Scholar]
- Feng XS, Xiang CQ, Zhong DK. 2011a. The state-of-art of three-dimensional numerical study for corona-interplanetary process of solar storms (in Chinese). Sci Sin-Terr 41(1): 1. [CrossRef] [Google Scholar]
- Feng XS, Xiang CQ, Zhong DK. 2013. Numerical study of interplanetary solar storms (in Chinese). Sci Sin-Terr 43: 912. [CrossRef] [Google Scholar]
- Feng XS, Yang LP, Xiang CQ, Wu ST, Zhou YF, Zhong DK. 2010. Three-dimensional solar wind modeling from the Sun to Earth by a SIP-CESE MHD model with a six-component grid. Astrophys J 723: 300–319. https://doi.org/10.1088/0004-637X/723/1/300. [NASA ADS] [CrossRef] [Google Scholar]
- Feng XS, Zhang SH, Xiang CQ, Yang LP, Jiang CW, Wu ST. 2011b. A hybrid solar wind model of the CESE+HLL method with a Yin-Yang overset grid and an AMR grid. Astrophys J 734: 50. https://doi.org/10.1088/0004-637X/734/1/50. [CrossRef] [Google Scholar]
- Fox NJ, Velli MC, Bale SD, Decker R, Driesman A, et al. 2016. The solar probe plus mission: Humanity’s first visit to our star. Space Sci Rev 204(1–4): 7–48. https://doi.org/10.1007/s11214-015-0211-6. [Google Scholar]
- Galvin AB, Kistler LM, Popecki MA, Farrugia CJ, Simunac KDC, et al. 2008. The plasma and suprathermal ion composition (PLASTIC) investigation on the STEREO observatories. Space Sci Rev 136(1–4): 437–486. https://doi.org/10.1007/s11214-007-9296-x. [CrossRef] [Google Scholar]
- Gilleland E, Ahijevych D, Brown BG, Casati B, Ebert EE. 2009. Intercomparison of spatial forecast verification methods. Weather Forecast 24: 1416. https://doi.org/10.1175/2009WAF2222269.1. [CrossRef] [Google Scholar]
- Gombosi TI, van der Holst B, Manchester WB, Sokolov IV. 2018. Extended MHD modeling of the steady solar corona and the solar wind. Living Rev Sol Phys 15: 4. https://doi.org/10.1007/s41116-018-0014-4. [CrossRef] [Google Scholar]
- Gómez-Herrero R, Malandraki O, Dresing N, Kilpua E, Heber B, Klassen A, Müller-Mellin R, Wimmer-Schweingruber RF. 2011. Spatial and temporal variations of CIRs: Multi-point observations by STEREO. J Atmos Sol-Terr Phys 73: 551–565. https://doi.org/10.1016/j.jastp.2010.11.017. [CrossRef] [Google Scholar]
- Gressl C, Veronig AM, Temmer M, Odstrčil D, Linker JA, Mikić Z, Riley P. 2014. Comparative study of MHD modeling of the background solar wind. Sol Phys 289: 1783–1801. https://doi.org/10.1007/s11207-013-0421-6. [NASA ADS] [CrossRef] [Google Scholar]
- Jian LK, MacNeice PJ, Mays ML, Taktakishvili A, Odstrcil D, Jackson B, Yu H-S, Riley P, Sokolov IV. 2016. Validation for global solar wind prediction using Ulysses comparison: Multiple coronal and heliospheric models installed at the Community Coordinated Modeling Center. Space Weather 14: 592–611. https://doi.org/10.1002/2016SW001435. [CrossRef] [Google Scholar]
- Jian LK, MacNeice PJ, Taktakishvili A, Odstrcil D, Jackson B, Yu H-S, Riley P, Sokolov IV, Evans RM. 2015. Validation for solar wind prediction at Earth: Comparison of coronal and heliospheric models installed at the CCMC. Space Weather 13: 316–338. https://doi.org/10.1002/2015SW001174. [CrossRef] [Google Scholar]
- Jian LK, Russell CT, Luhmann JG, Galvin AB. 2018. STEREO observations of interplanetary coronal mass ejections in 2007–2016. Astrophys J 855(2): 114. https://doi.org/10.3847/1538-4357/aab189. [CrossRef] [Google Scholar]
- Jin M, Manchester WB, van der Holst B, Sokolov I, Tóth G, Mullinix RE, Taktakishvili A, Chulaki A, Gombosi TI. 2017. Data-constrained coronal mass ejections in a Global Magnetohydrodynamics model. Astrophys J 834: 173. https://doi.org/10.3847/1538-4357/834/2/173. [CrossRef] [Google Scholar]
- Kasper JC, Bale SD, Belcher JW, Berthomier M, Case AW, et al. 2019. Alfvénic velocity spikes and rotational flows in the near-Sun solar wind. Nature 576(7786): 228–231. https://doi.org/10.1038/s41586-019-1813-z. [NASA ADS] [CrossRef] [Google Scholar]
- Kilpua EKJ, Balogh A, von Steiger R, Liu YD. 2017. Geoeffective properties of solar transients and stream interaction regions. Space Sci Rev 212: 1271–1314. https://doi.org/10.1007/s11214-017-0411-3. [Google Scholar]
- King JH, Papitashvili NE. 2005. Solar wind spatial scales in and comparisons of hourly wind and ACE plasma and magnetic field data. J Geophys Res (Space Phys) 110: A02104. https://doi.org/10.1029/2004JA010649. [Google Scholar]
- Koziel S, Yang XS (Eds.). 2011. Computational optimization, methods and algorithms, Springer, Berlin, Heidelberg. ISBN 978-3-642-20859-1. https://doi.org/10.1007/978-3-642-20859-1. [CrossRef] [Google Scholar]
- Le Chat G, Issautier K, Meyer-Vernet N. 2012. The solar wind energy flux. Sol Phys 279(1): 197–205. https://doi.org/10.1007/s11207-012-9967-y. [CrossRef] [Google Scholar]
- Lee CO, Luhmann JG, Odstrcil D, MacNeice PJ, de Pater I, Riley P, Arge CN. 2009. The solar wind at 1 AU during the declining phase of solar cycle 23: Comparison of 3D numerical model results with observations. Sol Phys 254: 155–183. https://doi.org/10.1007/s11207-008-9280-y. [NASA ADS] [CrossRef] [Google Scholar]
- Li HC, Feng XS. 2018. CESE-HLL magnetic field-driven modeling of the background solar wind during year 2008. J Geophys Res (Space Phys) 123: 4488–4509. https://doi.org/10.1029/2017JA025125. [NASA ADS] [CrossRef] [Google Scholar]
- Luhmann JG, Curtis DW, Schroeder P, McCauley J, Lin RP, et al. 2008. STEREO IMPACT investigation goals, measurements, and data products overview. Space Sci Rev 136: 117–184. https://doi.org/10.1007/s11214-007-9170-x. [CrossRef] [Google Scholar]
- MacNeice P. 2009a. Validation of community models: 2. Development of a baseline using the Wang-Sheeley-Arge model. Space Weather 7: S12002. https://doi.org/10.1029/2009SW000489. [Google Scholar]
- MacNeice P. 2009b. Validation of community models: Identifying events in space weather model timelines. Space Weather 7: S06004. https://doi.org/10.1029/2009SW000463. [Google Scholar]
- MacNeice P. 2018. On the need to automate support for quality assessment studies of space weather models. Space Weather 16: 1627–1634. https://doi.org/10.1029/2018SW002039. [CrossRef] [Google Scholar]
- MacNeice P, Jian LK, Antiochos SK, Arge CN, Bussy-Virat CD, et al. 2018. Assessing the quality of models of the ambient solar wind. Space Weather 16: 1644–1667. https://doi.org/10.1029/2018SW002040. [CrossRef] [Google Scholar]
- McComas DJ, Barraclough BL, Funsten HO, Gosling JT, Santiago-Muñoz E, Skoug RM, Goldstein BE, Neugebauer M, Riley P, Balogh A. 2000. Solar wind observations over Ulysses’ first full polar orbit. J Geophys Res 105(A5): 10419–10434. https://doi.org/10.1029/1999JA000383. [Google Scholar]
- McGregor SL, Hughes WJ, Arge CN, Owens MJ, Odstrcil D. 2011. The distribution of solar wind speeds during solar minimum: Calibration for numerical solar wind modeling constraints on the source of the slow solar wind. J Geophys Res (Space Phys) 116: A03101. https://doi.org/10.1029/2010JA015881. [Google Scholar]
- Merkin VG, Lyon JG, Lario D, Arge CN, Henney CJ. 2016. Time-dependent magnetohydrodynamic simulations of the inner heliosphere. J Geophys Res (Space Phys) 121: 2866–2890. https://doi.org/10.1002/2015JA022200. [CrossRef] [Google Scholar]
- Mikić Z, Downs C, Linker JA, Caplan RM, et al. 2018. Predicting the corona for the 21 August 2017 total solar eclipse. Nature Astron 2: 913–921. https://doi.org/10.1038/s41550-018-0562-5. [NASA ADS] [CrossRef] [Google Scholar]
- Mikić Z, Linker JA, Schnack DD, Lionello R, Tarditi A. 1999. Magnetohydrodynamic modeling of the global solar corona. Phys Plasmas 6: 2217–2224. https://doi.org/10.1063/1.873474. [NASA ADS] [CrossRef] [Google Scholar]
- Müller D, Marsden RG, St. Cyr OC, Gilbert HR. 2013. Solar orbiter. Exploring the Sun-Heliosphere connection. Sol Phys 285(1–2): 25–70. https://doi.org/10.1007/s11207-012-0085-7. [CrossRef] [Google Scholar]
- Neugebauer M, Forsyth RJ, Galvin AB, Harvey KL, Hoeksema JT, et al. 1998. Spatial structure of the solar wind and comparisons with solar data and models. J Geophys Res 103: 14587–14600. https://doi.org/10.1029/98JA00798. [CrossRef] [Google Scholar]
- Odstrcil D. 2003. Modeling 3-D solar wind structure. Adv Space Res 32: 497–506. https://doi.org/10.1016/S0273-1177(03)00332-6. [NASA ADS] [CrossRef] [Google Scholar]
- Owens MJ. 2018. Time-window approaches to space-weather forecast metrics: A solar wind case study. Space Weather 16(11): 1847–1861. https://doi.org/10.1029/2018SW002059. [NASA ADS] [CrossRef] [Google Scholar]
- Owens MJ, Challen R, Methven J, Henley E, Jackson DR. 2013. A 27 day persistence model of near-Earth solar wind conditions: A long lead-time forecast and a benchmark for dynamical models. Space Weather 11: 225–236. https://doi.org/10.1002/swe.20040. [CrossRef] [Google Scholar]
- Owens MJ, Lang M, Riley P, Lockwood M, Lawless AS. 2020. Quantifying the latitudinal representivity of in situ solar wind observations. J Space Weather Space Clim 10: 8. https://doi.org/10.1051/swsc/2020009. [CrossRef] [Google Scholar]
- Owens MJ, Riley P. 2017. Probabilistic solar wind forecasting using large ensembles of near-sun conditions with a simple one-dimensional “Upwind” scheme. Space Weather 15(11): 1461–1474. https://doi.org/10.1002/2017SW001679. [CrossRef] [Google Scholar]
- Pahud DM, Merkin VG, Arge CN, Hughes WJ, McGregor SM. 2012. An MHD simulation of the inner heliosphere during Carrington rotations 2060 and 2068: Comparison with MESSENGER and ACE spacecraft observations. J Atmos Sol-Terr Phys 83: 32–38. https://doi.org/10.1016/j.jastp.2012.02.012. [CrossRef] [Google Scholar]
- Pomoell J, Poedts S. 2018. EUHFORIA: European heliospheric forecasting information asset. J Space Weather Space Clim 8(27): A35. https://doi.org/10.1051/swsc/2018020. [CrossRef] [Google Scholar]
- Reiss MA, MacNeice PJ, Mays LM, Arge CN, Möstl C, Nikolic L, Amerstorfer T. 2019. Forecasting the ambient solar wind with numerical models. I. On the implementation of an operational framework. Astrophys J Suppl Ser 240(2): 35. https://doi.org/10.3847/1538-4365/aaf8b3. [CrossRef] [Google Scholar]
- Reiss MA, Temmer M, Veronig AM, Nikolic L, Vennerstrom S, Schöngassner F, Hofmeister SJ. 2016. Verification of high-speed solar wind stream forecasts using operational solar wind models. Space Weather 14: 495–510. https://doi.org/10.1002/2016SW001390. [CrossRef] [Google Scholar]
- Richardson IG, Cane HV. 2010. Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): Catalog and summary of properties. Sol Phys 264(1): 189–237. https://doi.org/10.1007/s11207-010-9568-6. [CrossRef] [Google Scholar]
- Richardson IG, Cane HV. 2012. Solar wind drivers of geomagnetic storms during more than four solar cycles. J Space Weather Space Clim 2(27): A01. https://doi.org/10.1051/swsc/2012001. [Google Scholar]
- Richardson IG, Mazur JE, Mason GM. 1998. A comparison of recurrent energetic ion enhancements observed at Ulysses and at 1 AU by IMP 8 and SAMPEX: Ulysses launch until following the first north polar passage. J Geophys Res 103(A2): 2115–2130. https://doi.org/10.1029/97JA03064. [CrossRef] [Google Scholar]
- Riley P, Linker JA, Lionello R, Mikic Z. 2012. Corotating interaction regions during the recent solar minimum: The power and limitations of global MHD modeling. J Atmos Sol-Terr Phys 83: 1–10. https://doi.org/10.1016/j.jastp.2011.12.013. [CrossRef] [Google Scholar]
- Riley P, Luhmann J, Opitz A, Linker JA, Mikic Z. 2010. Interpretation of the cross-correlation function of ACE and STEREO solar wind velocities using a global MHD Model. J Geophys Res (Space Phys) 115: A11104. https://doi.org/10.1029/2010JA015717. [Google Scholar]
- Schrijver CJ, Kauristie K, Aylward AD, Denardini CM, Gibson SE, et al. 2015. Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS. Adv Space Res 55: 2745–2807. https://doi.org/10.1016/j.asr.2015.03.023. [NASA ADS] [CrossRef] [Google Scholar]
- Shen F, Yang ZC, Zhang J, Wei WW, Feng XS. 2018. Three-dimensional MHD simulation of solar wind using a new boundary treatment: Comparison with in situ data at Earth. Astrophys J 866: 18. https://doi.org/10.3847/1538-4357/aad806. [CrossRef] [Google Scholar]
- Shiota D, Kataoka R, Miyoshi Y, Hara T, Tao C, Masunaga K, Futaana Y, Terada N. 2014. Inner heliosphere MHD modeling system applicable to space weather forecasting for the other planets. Space Weather 12: 187–204. https://doi.org/10.1002/2013SW000989. [CrossRef] [Google Scholar]
- Simunac KDC, Kistler LM, Galvin AB, Lee MA, Popecki MA, et al. 2009. In situ observations of solar wind stream interface evolution. Sol Phys 259: 323–344. https://doi.org/10.1007/s11207-009-9393-y. [NASA ADS] [CrossRef] [Google Scholar]
- Sokół JM, Bzowski M, Tokumaru M, Fujiki K, McComas DJ. 2013. Heliolatitude and time variations of solar wind structure from in situ measurements and interplanetary scintillation observations. Sol Phys 285(1–2): 167–200. https://doi.org/10.1007/s11207-012-9993-9. [NASA ADS] [CrossRef] [Google Scholar]
- Spence H, Baker D, Burns A, Guild T, Huang C-L, Siscoe G, Weigel R. 2004. Center for integrated space weather modeling metrics plan and initial model validation results. J Atmos Sol-Terr Phys 66: 1499–1507. https://doi.org/10.1016/j.jastp.2004.03.029. [CrossRef] [Google Scholar]
- Török T, Downs C, Linker JA, Lionello R, Titov VS, Mikić Z, Riley P, Caplan RM, Wijaya J. 2018. Sun-to-Earth MHD simulation of the 2000 July 14 “Bastille Day” eruption. Astrophys J 856: 75. https://doi.org/10.3847/1538-4357/aab36d. [Google Scholar]
- Tóth G, van der Holst B, Sokolov IV, De Zeeuw DL, Gombosi TI, et al. 2012. Adaptive numerical algorithms in space weather modeling. J Comput Phys 231: 870–903. https://doi.org/10.1016/j.jcp.2011.02.006. [NASA ADS] [CrossRef] [Google Scholar]
- Tsurutani BT, Gonzalez WD, Gonzalez ALC, Guarnieri FL, Gopalswamy N, et al. 2006. Corotating solar wind streams and recurrent geomagnetic activity: A review. J Geophys Res (Space Phys) 111: A07S01. https://doi.org/10.1029/2005JA011273. [Google Scholar]
- van der Holst B, Sokolov IV, Meng X, Jin M, Manchester WB IV, Tóth G, Gombosi TI. 2014. Alfvén wave solar model (AWSoM): Coronal hating. Astrophys J 782: 81. https://doi.org/10.1088/0004-637X/782/2/81. [NASA ADS] [CrossRef] [Google Scholar]
- Vršnak B, Dumbović M, Čalogović J, Verbanac G, Poljančić Beljan I. 2017. Geomagnetic effects of corotating interaction regions. Sol Phys 292: 140. https://doi.org/10.1007/s11207-017-1165-5. [CrossRef] [Google Scholar]
- Wang YM. 2010. On the relative constancy of the solar wind mass flux at 1 AU. Astrophys J Lett 715(2): L121–L127. https://doi.org/10.1088/2041-8205/715/2/L121. [NASA ADS] [CrossRef] [Google Scholar]
- Wiengarten T, Kleimann J, Fichtner H, Kühl P, Kopp A, Heber B, Kissmann R. 2014. Cosmic ray transport in heliospheric magnetic structures. I. Modeling background solar wind using the CRONOS magnetohydrodynamic code. Astrophys J 788: 80. https://doi.org/10.1088/0004-637X/788/1/80. [NASA ADS] [CrossRef] [Google Scholar]
- Wold AM, Mays ML, Taktakishvili A, Jian LK, Odstrcil D, MacNeice P. 2018. Verification of real-time WSA-ENLIL+Cone simulations of CME arrival-time at the CCMC from 2010 to 2016. J Space Weather Space Clim 8(27): A17. https://doi.org/10.1051/swsc/2018005. [CrossRef] [Google Scholar]
- Wu ST, Dryer M. 2015. Comparative analyses of current three-dimensional numerical solar wind models. Sci China-Earth Sci 58(6): 839–858. https://doi.org/10.1007/s11430-015-5062-1. [CrossRef] [Google Scholar]
- Yang LP, Feng XS, Xiang CQ, Liu Y, Zhao X, Wu ST. 2012. Time-dependent MHD modeling of the global solar corona for year 2007: Driven by daily-updated magnetic field synoptic data. J Geophys Res (Space Phys) 117: A08110. https://doi.org/10.1029/2011JA017494. [Google Scholar]
- Zhou Y, Feng X. 2017. Numerical study of the propagation characteristics of coronal mass ejections in a structured ambient solar wind. J Geophys Res (Space Phys) 122: 1451–1462. https://doi.org/10.1002/2016JA023053. [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.