Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
Topical Issue - Space Weather Instrumentation
|
|
---|---|---|
Article Number | 49 | |
Number of page(s) | 19 | |
DOI | https://doi.org/10.1051/swsc/2020052 | |
Published online | 14 October 2020 |
- Antiochos SK, DeVore CR, Klimchuk JA. 1999. A model for solar coronal mass ejections. Astrophys J 510(1): 485–493. https://doi.org/10.1086/306563. [Google Scholar]
- Auchère F, Rizzi J, Philippon A, Rochus P. 2011. Minimization of the shadow patterns produced by periodic mesh grids in extreme ultraviolet telescopes. J Opt Soc Am A 28: 40–45. https://doi.org/10.1364/JOSAA.28.000040. [NASA ADS] [CrossRef] [Google Scholar]
- Bailey RL, Möstl C, Reiss MA, Weiss AJ, Amerstorfer UV, Amerstorfer T, Hinterreiter J, Magnes W, Leonhardt R. 2020. Prediction of Dst during solar minimum using in situ measurements at L5. Space Weather 18(5): e02424. https://doi.org/10.1029/2019SW002424. [CrossRef] [Google Scholar]
- Barnes G, Leka KD, Schrijver CJ, Colak T, Qahwaji R, et al. 2016. A comparison of flare forecasting methods. I. Results from the “All-Clear” workshop. Astrophys J 829(2): 89. https://doi.org/10.3847/0004-637X/829/2/89. [Google Scholar]
- Benz AO. 2017. Flare observations. Living Rev Sol Phys 14(1): 2. https://doi.org/10.1007/s41116-016-0004-3. [CrossRef] [Google Scholar]
- Brueckner GE, Howard RA, Koomen MJ, Korendyke CM, Michels DJ, et al. 1995. The large angle spectroscopic coronagraph (LASCO). Sol Phys 162: 357–402. https://doi.org/10.1007/BF00733434. [CrossRef] [Google Scholar]
- Byrne JP, Maloney SA, McAteer RTJ, Refojo JM, Gallagher PT. 2010. Propagation of an Earth-directed coronal mass ejection in three dimensions. Nat Commun 1(6): 74. https://doi.org/10.1038/ncomms1077. [NASA ADS] [CrossRef] [Google Scholar]
- Byrne JP, Morgan H, Seaton DB, Bain HM, Habbal SR. 2014. Bridging EUV and white-light observations to inspect the initiation phase of a “two-stage” solar eruptive event. Sol Phys 289: 4545–4562. https://doi.org/10.1007/s11207-014-0585-8. [CrossRef] [Google Scholar]
- Cargill PJ, Mariska JT, Antiochos SK. 1995. Cooling of solar flare plasmas. I. Theoretical considerations. Astrophys J 439: 1034. https://doi.org/10.1086/175240. [Google Scholar]
- Cargill PJ, Chen J, Spicer DS, Zalesak ST. 1996. Magnetohydrodynamic simulations of the motion of magnetic flux tubes through a magnetized plasma. J Geophys Res 101: 4855–4870. https://doi.org/10.1029/95JA03769. [NASA ADS] [CrossRef] [Google Scholar]
- Carmichael H. 1964. A Process for Flares. In: The physics of solar flares, Proceedings of the AAS-NASA Symposium held 28–30 October, 1963 at the Goddard Space Flight Center, Greenbelt, MD, Wilmot Hess N (Ed.), National Aeronautics and Space Administration, Science and Technical Information Division, Washington, DC, 50, 451 p. [Google Scholar]
- Cécere M, Sieyra MV, Cremades H, Mierla M, Sahade A, Stenborg G, Costa A, West MJ, D’Huys E. 2020. Large non-radial propagation of a coronal mass ejection on 2011 January 24. Adv Space Res 65(6): 1654–1662. https://doi.org/10.1016/j.asr.2019.08.043. [CrossRef] [Google Scholar]
- Culhane JL, Harra LK, James AM, Al-Janabi K, Bradley LJ, et al. 2007. The EUV imaging spectrometer for Hinode. Sol Phys 243(1): 19–61. https://doi.org/10.1007/s01007-007-0293-1. [NASA ADS] [CrossRef] [Google Scholar]
- Defise J-M, Halain J-P, Berghmans D, Denis F, Mazy E, et al. 2007. SWAP: A novel EUV telescope for space weather. In: Solar physics and space weather instrumentation II, Vol. 6689 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 66890S. https://doi.org/10.1117/12.731784. [CrossRef] [Google Scholar]
- Delaboudinière J-P, Artzner GE, Brunaud J, Gabriel AH, Hochedez JF, et al. 1995. EIT: Extreme-ultraviolet imaging telescope for the SOHO mission. Sol Phys 162: 291–312. https://doi.org/10.1007/BF00733432. [Google Scholar]
- Eyles CJ, Harrison RA, Davis CJ, Waltham NR, Shaughnessy BM, et al. 2009. The heliospheric imagers onboard the STEREO mission. Sol Phys 254(2): 387–445. https://doi.org/10.1007/s11207-008-9299-0. [CrossRef] [Google Scholar]
- Gopalswamy N, Yashiro S, Michalek G, Xie H, Mäkelä P, Vourlidas A, Howard RA. 2010. A catalog of halo coronal mass ejections from SOHO. Sun Geosph 5(1): 7–16. [Google Scholar]
- Gopalswamy N, Davila JM, St. Cyr OC, Sittler EC, Auchère F, et al. 2011. Earth-affecting solar causes observatory (EASCO): A potential International Living with a Star Mission from Sun-Earth L5. J Atmos Sol-Terr Phys 73(5–6): 658–663. https://doi.org/10.1016/j.jastp.2011.01.013. [CrossRef] [Google Scholar]
- Halain J-P, Berghmans D, Seaton DB, Nicula B, De Groof A, Mierla M, Mazzoli A, Defise J-M, Rochus P. 2013. The SWAP EUV imaging telescope. Part II: In-flight performance and calibration. Sol Phys 286: 67–91. https://doi.org/10.1007/s11207-012-0183-6. [Google Scholar]
- Hapgood M. 2017. Space Weather, IOP Publishing Ltd 2017 ISBN 978-0-7503-1372-8. https://doi.org/10.1088/978-0-7503-1372-8. [Google Scholar]
- Hirayama T. 1974. Theoretical model of flares and prominences. I: Evaporating flare model. Sol Phys 34(2): 323–338. https://doi.org/10.1007/BF00153671. [Google Scholar]
- Hochedez J-F, Schmutz W, Stockman Y, Schühle U, Benmoussa A, et al. 2006. LYRA, a solar UV radiometer on Proba2. Adv Space Res 37: 303–312. https://doi.org/10.1016/j.asr.2005.10.041. [CrossRef] [Google Scholar]
- Howard RA, Moses JD, Vourlidas A, Newmark JS, Socker DG, et al. 2008. Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci Rev 136: 67–115. https://doi.org/10.1007/s11214-008-9341-4. [Google Scholar]
- Hudson HS, Cliver EW. 2001. Observing coronal mass ejections without coronagraphs. J Geophys Res 106(A11): 25199–25214. https://doi.org/10.1029/2000JA904026. [NASA ADS] [CrossRef] [Google Scholar]
- Kahler SW, Hudson HS. 2001. Origin and development of transient coronal holes. J Geophys Res 106(A12): 29239–29248. https://doi.org/10.1029/2001JA000127. [NASA ADS] [CrossRef] [Google Scholar]
- Kaiser ML, Kucera TA, Davila JM, St OC, Cyr M Guhathakurta, Christian E. 2008. The STEREO mission: An introduction. Space Sci Rev 136(1–4): 5–16. https://doi.org/10.1007/s11214-007-9277-0. [CrossRef] [Google Scholar]
- Kliem B, Török T. 2006. Torus instability. Phys Rev Lett 96(25): 255002. https://doi.org/10.1103/PhysRevLett.96.255002. [Google Scholar]
- Kopp RA, Pneuman GW. 1976. Magnetic reconnection in the corona and the loop prominence phenomenon. Sol Phys 50(1): 85–98. https://doi.org/10.1007/BF00206193. [Google Scholar]
- Kraaikamp E, Verbeeck C. 2015. Solar Demon – an approach to detecting flares, dimmings, and EUV waves on SDO/AIA images. J Space Weather Space Clim 5: A18. https://doi.org/10.1051/swsc/2015019. [CrossRef] [Google Scholar]
- Lee K, Moon YJ, Lee J-Y, Lee K-S, Na H. 2012. Solar flare occurrence rate and probability in terms of the sunspot classification supplemented with sunspot area and its changes. Sol Phys 281(2): 639–650. https://doi.org/10.1007/s11207-012-0091-9. [CrossRef] [Google Scholar]
- Lemen JR, Title AM, Akin DJ, Boerner PF, Chou C, et al. 2012. The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Sol Phys 275(1–2): 17–40. https://doi.org/10.1007/s11207-011-9776-8. [Google Scholar]
- Lin J. 2004. CME-flare association deduced from Catastrophic model of CMEs. Sol Phys 219(1): 169–196. https://doi.org/10.1023/B:SOLA.0000021798.46677.16. [NASA ADS] [CrossRef] [Google Scholar]
- Lin J, Forbes TG. 2000. Effects of reconnection on the coronal mass ejection process. J Geophys Res 105(A2): 2375–2392. https://doi.org/10.1029/1999JA900477. [CrossRef] [Google Scholar]
- Liu W, Ofman L. 2014. Advances in observing various coronal EUV waves in the SDO era and their seismological applications (invited review). Sol Phys 289(9): 3233–3277. https://doi.org/10.1007/s11207-014-0528-4. [Google Scholar]
- Martens PC, Zwaan C. 2001. Origin and evolution of filament-prominence systems. Astrophys J 558(2): 872–887. https://doi.org/10.1086/322279. [NASA ADS] [CrossRef] [Google Scholar]
- Mierla M, Inhester B, Marqué C, Rodriguez L, Gissot S, Zhukov AN, Berghmans D, Davila J. 2009. On 3D reconstruction of coronal mass ejections: I. Method description and application to SECCHI-COR data. Sol Phys 259(1–2): 123–141. https://doi.org/10.1007/s11207-009-9416-8. [CrossRef] [Google Scholar]
- Mierla M, Seaton DB, Berghmans D, Chifu I, De Groof A, Inhester B, Rodriguez L, Stenborg G, Zhukov AN. 2013. Study of a prominence eruption using PROBA2/SWAP and STEREO/EUVI data. Sol Phys 286(1): 241–253. https://doi.org/10.1007/s11207-012-9965-0. [CrossRef] [Google Scholar]
- Mierla M, Janssens J, D’Huys E, Wauters L, West MJ, Seaton DB, Berghmans D, Podladchikova E. 2020. Long-term evolution of the solar corona using PROBA2 data. Sol Phys 295(5): 66. https://doi.org/10.1007/s11207-020-01635-x. [CrossRef] [Google Scholar]
- Moore RL, Sterling AC, Hudson HS, Lemen JR. 2001. Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys J 552(2): 833–848. https://doi.org/10.1086/320559. [Google Scholar]
- Müller D, Nicula B, Felix S, Verstringe F, Bourgoignie B, et al. 2017. JHelioviewer. Time-dependent 3D visualisation of solar and heliospheric data. A&A 606: A10. https://doi.org/10.1051/0004-6361/201730893. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Nicula B, Berghmans D, Hochedez J-F. 2005. Poisson recoding of solar images for enhanced compression. Sol Phys 228(1–2): 253–264. https://doi.org/10.1007/s11207-005-4998-2. [CrossRef] [Google Scholar]
- Ofman L, Thompson BJ. 2002. Interaction of EIT waves with coronal active regions. Astrophys J 574: 440–452. https://doi.org/10.1086/340924. [Google Scholar]
- Ofman L, Kucera TA, Mouradian Z, Poland AI. 1998. SUMER observations of the evolution and the disappearance of a solar prominence. Sol Phys 183(1): 97–106. https://doi.org/10.1023/A:1005052923972. [NASA ADS] [CrossRef] [Google Scholar]
- O’Hara JP, Mierla M, Podladchikova O, D’Huys E, West MJ. 2019. Exceptional extended field-of-view observations by PROBA2/SWAP on 2017 April 1 and 3. Astrophys J 883(1): 59. https://doi.org/10.3847/1538-4357/ab3b08. [CrossRef] [Google Scholar]
- Parenti S. 2014. Solar prominences: Observations. Living Rev Sol Phys 11(1): 1. https://doi.org/10.12942/lrsp-2014-1. [NASA ADS] [CrossRef] [Google Scholar]
- Podladchikova O, Vourlidas A, Van der Linden RAM, Wülser JP, Patsourakos S. 2010. Extreme ultraviolet observations and analysis of micro-eruptions and their associated coronal waves. Astrophys J 709(1): 369–376. https://doi.org/10.1088/0004-637X/709/1/369. [NASA ADS] [CrossRef] [Google Scholar]
- Rochus P, Auchère F, Berghmans D, Harra L, Schmutz W, Schühle U, Addison P, Appourchaux T, Aznar Cuadrado R, Baker D, Barbay J, Bates D, BenMoussa A, Bergmann M, Beurthe C, Borgo B, Bonte K, Bouzit M, Bradley L, Büchel V, Buchlin E, Büchner J, Cabé F, Cadiergues L, Chaigneau M, Chares B, Choque Cortez C, Coker P, Condamin M, Coumar S, Curdt W, Cutler J, Davies D, Davison G, Defise J-M, Del Zanna G, Delmotte F, Delouille V, Dolla L, Dumesnil C, Dürig F, Enge R, François S, Fourmond J-J, Gillis J-M, Giordanengo B, Gissot S, Green LM, Guerreiro N, Guilbaud A, Gyo M, Haberreiter M, Hafiz A, Hailey M, Halain J-P, Hansotte J, Hecquet C, Heerlein K, Hellin M-L, Hemsley S, Hermans A, Hervier V, Hochedez J-F, Houbrechts Y, Ihsan K, Jacques L, Jérôme A, Jones J, Kahle M, Kennedy T, Klaproth M, Kolleck M, Koller S, Kotsialos E, Kraaikamp E, Langer P, Lawrenson A, Le Clech’ J-C, Lenaerts C, Liebecq S, Linder D, Long DM, Mampaey B, Markiewicz-Innes D, Marquet B, Marsch E, Matthews S, Mazy E, Mazzoli A, Meining S, Meltchakov E, Mercier R, Meyer S, Monecke M, Monfort F, Morinaud G, Moron F, Mountney L, Müller R, Nicula B, Parenti S, Peter H, Pfiffner D, Philippon A, Phillips I, Plesseria J-Y, Pylyser E, Rabecki F, Ravet-Krill M-F, Rebellato J, Renotte E, Rodriguez L, Roose S, Rosin J, Rossi L, Roth P, Rouesnel F, Roulliay M, Rousseau A, Ruane K, Scanlan J, Schlatter P, Seaton DB, Silliman K, Smit S, Smith PJ, Solanki SK, Spescha M, Spencer A, Stegen K, Stockman Y, Szwec N, Tamiatto C, Tandy J, Teriaca L, Theobald C, Tychon I, van Driel-Gesztelyi L, Verbeeck C, Vial J-C, Werner S, West MJ, Westwood D, Wiegelmann T, Willis G, Winter B, Zerr A, Zhang X, Zhukov AN. 2020. The solar orbiter EUI instrument: The extreme ultraviolet imager. A&A 642, A8. https://doi.org/10.1051/0004-6361/201936663. [CrossRef] [EDP Sciences] [Google Scholar]
- Rodriguez L, Scolini C, Mierla M, Zhukov AN, West MJ. 2020. Space weather monitor at the L5 point: A case study of a CME observed with STEREO B. Space Weather: e2020SW002533. https://doi.org/10.1029/2020SW002533. [Google Scholar]
- Rust DM. 1983. Coronal disturbances and their terrestrial effects. Space Sci Rev 34(1): 21–36. https://doi.org/10.1007/BF00221193. [Google Scholar]
- Sarkar R, Srivastava N, Mierla M, West MJ, D’Huys E. 2019. Evolution of the coronal cavity from the quiescent to eruptive phase associated with coronal mass ejection. Astrophys J 875(2): 101. https://doi.org/10.3847/1538-4357/ab11c5. [CrossRef] [Google Scholar]
- Seaton DB, Berghmans D, Nicula B, Halain J-P, De Groof A, et al. 2013a. The SWAP EUV imaging telescope part I: Instrument overview and pre-flight testing. Sol Phys 286: 43–65. https://doi.org/10.1007/s11207-012-0114-6. [CrossRef] [Google Scholar]
- Seaton DB, De Groof A, Shearer P, Berghmans D, Nicula B. 2013b. SWAP observations of the long-term, large-scale evolution of the extreme-ultraviolet solar corona. Astrophys J 777(1): 72. https://doi.org/10.1088/0004-637X/777/1/72. [CrossRef] [Google Scholar]
- Shestov SV, Bozhenkov SA, Zhitnik IA, Kuzin SV, Urnov AM, Beigman IL, Goryaev FF, Tolstikhina IY. 2008. Solar EUV spectra obtained during the SPIRIT experiment onboard the CORONAS-F satellite: A catalog of lines in the range 176 207 Å. Astron Lett 34(1): 33–51. https://doi.org/10.1134/S1063773708010052. [CrossRef] [Google Scholar]
- Shestov S, Reva A, Kuzin S. 2014. Extreme ultraviolet spectra of solar flares from the extreme ultraviolet spectroheliograph SPIRIT onboard the CORONAS-F satellite. Astrophys J 780(1): 15. https://doi.org/10.1088/0004-637X/780/1/15. [Google Scholar]
- Sturrock PA. 1966. Model of the high-energy phase of solar flares. Nature 211(5050): 695–697. https://doi.org/10.1038/211695a0. [NASA ADS] [CrossRef] [Google Scholar]
- Su Y, van Ballegooijen A, Schmieder B, Berlicki A, Guo Y, Golub L, Huang G. 2009. Flare energy build-up in a decaying active region near a coronal hole. Astrophys J 704(1): 341–353. https://doi.org/10.1088/0004-637X/704/1/341. [Google Scholar]
- Tadikonda SK, Freesland DC, Minor RR, Seaton DB, Comeyne GJ, Krimchansky A. 2019. Coronal imaging with the solar ultraviolet imager. Sol Phys 294(3): 28. https://doi.org/10.1007/s11207-019-1411-0. [CrossRef] [Google Scholar]
- Thompson BJ, Myers DC. 2009. A catalog of coronal “EIT Wave” transients. Astrophys J Suppl Ser 183: 225–243. https://doi.org/10.1088/0067-0049/183/2/225. [NASA ADS] [CrossRef] [Google Scholar]
- Toriumi S, Wang H. 2019. Flare-productive active regions. Living Rev Sol Phys 16(1): 3. https://doi.org/10.1007/s41116-019-0019-7. [CrossRef] [Google Scholar]
- van Driel-Gesztelyi L, Culhane JL. 2009. Magnetic flux emergence, activity, eruptions and magnetic clouds: Following magnetic field from the Sun to the heliosphere. Space Sci Rev 144(1–4): 351–381. https://doi.org/10.1007/s11214-008-9461-x. [NASA ADS] [CrossRef] [Google Scholar]
- Vršnak B, Temmer M, Veronig AM. 2007a. Coronal holes and solar wind high-speed streams: I. Forecasting the solar wind parameters. Sol Phys 240(2): 315–330. https://doi.org/10.1007/s11207-007-0285-8. [NASA ADS] [CrossRef] [Google Scholar]
- Vršnak B, Temmer M, Veronig AM. 2007b. Coronal holes and solar wind high-speed streams: II. Forecasting the geomagnetic effects. Sol Phys 240(2): 331–346. https://doi.org/10.1007/s11207-007-0311-x. [NASA ADS] [CrossRef] [Google Scholar]
- Webb DF. 2000. Understanding CMEs and their source regions. J Atmos Sol-Terr Phys 62: 1415–1426. https://doi.org/10.1016/S1364-6826(00)00075-4. [NASA ADS] [CrossRef] [Google Scholar]
- Webb DF, Howard TA. 2012. Coronal mass ejections: Observations. Living Rev Sol Phys 9(1): 3. https://doi.org/10.12942/lrsp-2012-3. [Google Scholar]
- West MJ, Seaton DB. 2015. SWAP observations of post-flare giant arches in the long-duration 14 October 2014 solar eruption. Astrophys J Lett 801(1): L6. https://doi.org/10.1088/2041-8205/801/1/L6. [NASA ADS] [CrossRef] [Google Scholar]
- West MJ, Zhukov AN, Dolla L, Rodriguez L. 2011. Coronal seismology using EIT waves: Estimation of the coronal magnetic field strength in the quiet Sun. Astrophys J 730(2): 122. https://doi.org/10.1088/0004-637X/730/2/122. [Google Scholar]
- Zhang J, Dere KP. 2006. A statistical study of main and residual accelerations of coronal mass ejections. Astrophys J 649: 1100–1109. https://doi.org/10.1086/506903. [CrossRef] [Google Scholar]
- Zhukov A.N.. 2005. Solar sources of geoeffective CMEs: A SOHO/EIT view. In: Coronal and stellar mass ejections, Dere K., Wang J., Yan Y. (Eds.), Vol. 226 of IAU Symposium, pp. 437–447. https://doi.org/10.1017/S1743921305001006. [Google Scholar]
- Zhukov AN, Auchère F. 2004. On the nature of EIT waves, EUV dimmings and their link to CMEs. A&A 427: 705–716. https://doi.org/10.1051/0004-6361:20040351. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.