Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
Topical Issue - Space Weather Instrumentation
|
|
---|---|---|
Article Number | 54 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/swsc/2020059 | |
Published online | 03 November 2020 |
- Alvarez-Herrero A, Parejo PG, Laguna H, Villanueva J, Barandiarán J, Bastide L, Reina M, Royo M. 2017. The polarization modulators based on liquid crystal variable retarders for the PHI and METIS instruments for the solar orbiter mission. In: International Conference on Space Optics – ICSO 2014, Sodnik Z, Cugny B, Karafolas N (Eds.), International Society for Optics and Photonics, SPIE, Vol. 10563, pp. 850–858. https://doi.org/10.1117/12.2304224. [Google Scholar]
- Braun DC, Lindsey C, Fan Y, Jefferies SM. 1992. Local acoustic diagnostics of the solar interior. Astrophys J 392: 739–745. https://doi.org/10.1086/171477. [NASA ADS] [CrossRef] [Google Scholar]
- del Toro Iniesta JC. 2003. Introduction to spectropolarimetry, Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/CBO9780511536250. [Google Scholar]
- del Toro Iniesta JC, Ruiz Cobo B. 2016. Inversion of the radiative transfer equation for polarized light. Living Rev Sol Phys 13(1): 4. https://doi.org/10.1007/s41116-016-0005-2. [NASA ADS] [CrossRef] [Google Scholar]
- Duvall TL Jr, Jefferies SM, Harvey JW, Pomerantz MA. 1993. Time-distance helioseismology. Nature 362(6419): 430–432. https://doi.org/10.1038/362430a0. [NASA ADS] [CrossRef] [Google Scholar]
- Gandorfer A, Grauf B, Staub J, Bischoff J, Woch J, et al. 2018. The High Resolution Telescope (HRT) of the Polarimetric and Helioseismic Imager (PHI) Onboard Solar Orbiter. In: Space telescopes and instrumentation 2018: Optical, infrared, and millimeter wave, Vol. 10698 of Proc. SPIE, 106984N. https://doi.org/0.1117/12.2311816. [Google Scholar]
- Gizon L, Fournier D, Yang D, Birch AC, Barucq H. 2018. Signal and noise in helioseismic holography. A&A 620: A136. https://doi.org/10.1051/0004-6361/201833825. [CrossRef] [EDP Sciences] [Google Scholar]
- Hawkes G, Berger MA. 2018. Magnetic helicity as a predictor of the solar cycle. Sol Phys 293(7): 109. https://doi.org/10.1007/s11207-018-1332-3. [NASA ADS] [CrossRef] [Google Scholar]
- Jing J, Chen PF, Wiegelmann T, Xu Y, Park S-H, Wang H. 2009. Temporal evolution of free magnetic energy associated with four X-class flares. Astrophys J 696(1): 84–90. https://doi.org/10.1088/0004-637X/696/1/84. [Google Scholar]
- Jing J, Tan C, Yuan Y, Wang B, Wiegelmann T, Xu Y, Wang H. 2010. Free magnetic energy and flare productivity of active regions. Astrophys J 713(1): 440–449. https://doi.org/10.1088/0004-637X/713/1/440. [Google Scholar]
- Kraft S, Puschmann KG, Luntama JP. 2017. Remote sensing optical instrumentation for enhanced space weather monitoring from the L1 and L5 Lagrange points. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 10562 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 105620F. https://doi.org/10.1117/12.2296100. [Google Scholar]
- Lagg A, Lites B, Harvey J, Gosain S, Centeno R. 2017. Measurements of photospheric and chromospheric magnetic fields. Space Sci Rev 210(1–4): 37–76. https://doi.org/10.1007/s11214-015-0219-y. [NASA ADS] [CrossRef] [Google Scholar]
- Liewer PC, González Hernández I, Hall JR, Lindsey C, Lin X. 2014. Testing the reliability of predictions of far-side active regions from helioseismology using STEREO far-side observations of solar activity. Sol Phys 289: 3617–3640. https://doi.org/10.1007/s11207-014-0542-6. [NASA ADS] [CrossRef] [Google Scholar]
- Lindsey C, Braun DC. 1990. Helioseismic imaging of sunspots at their antipodes. Sol Phys 126: 101–115. https://doi.org/10.1007/BF00158301. [NASA ADS] [CrossRef] [Google Scholar]
- Lindsey C, Braun DC. 1997. Helioseismic holography. Astrophys J 485: 895–903. [NASA ADS] [CrossRef] [Google Scholar]
- Lindsey C, Braun DC. 2000. Seismic images of the far side of the Sun. Science 287: 1799–1801. https://doi.org/10.1126/science.287.5459.1799. [NASA ADS] [CrossRef] [Google Scholar]
- Martinez Pillet V. 2007. Instrumental approaches to magnetic and velocity measurements in and out of the ecliptic plane. In: ESA Special Publication, Vol. 651 of ESA Special Publication, 27 p. [Google Scholar]
- Neckel H, Labs D. 1984. The solar radiation between 3300 and 12500 A. Sol Phys 90: 205–258. https://doi.org/10.1007/BF00173953. [Google Scholar]
- Orozco Suárez D, Del Toro Iniesta JC. 2007. The usefulness of analytic response functions. A&A 462: 1137–1145. https://doi.org/10.1051/0004-6361:20066201. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Pariat E, Leake JE, Valori G, Linton MG, Zuccarello FP, Dalmasse K. 2017. Relative magnetic helicity as a diagnostic of solar eruptivity. A&A 601: A125. https://doi.org/10.1051/0004-6361/201630043. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Pevtsov AA, Petrie G, MacNeice P, Virtanen II. 2020. Effect of additional magnetograph observations from different Lagrangian points in Sun-Earth system on predicted properties of quasi-steady solar wind at 1 AU. Space Weather 18(7): e02448. https://doi.org/10.1029/2020SW002448. [CrossRef] [Google Scholar]
- Prabhu A, Brandenburg A, Käpylä MJ, Lagg A. 2020. Helicity proxies from linear polarisation of solar active regions. A&A 641: A46. https://doi.org/10.1051/0004-6361/202037614. [CrossRef] [EDP Sciences] [Google Scholar]
- Schatten KH, Wilcox JM, Ness NF. 1969. A model of interplanetary and coronal magnetic fields. Sol Phys 6(3): 442–455. https://doi.org/10.1007/BF00146478. [NASA ADS] [CrossRef] [Google Scholar]
- Schou J, Scherrer PH, Bush RI, Wachter R, Couvidat S, et al. 2012. Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO). Sol Phys 275(1–2): 229–259. https://doi.org/10.1007/s11207-011-9842-2. [NASA ADS] [CrossRef] [Google Scholar]
- Schrijver CJ, DeRosa ML, Metcalf T, Barnes G, Lites B, et al. 2008. Nonlinear force-free field modeling of a solar active region around the time of a major flare and coronal mass ejection. Astrophys J 675(2): 1637–1644. https://doi.org/10.1086/527413. [NASA ADS] [CrossRef] [Google Scholar]
- Solanki SK, del Toro Iniesta JC, Woch J, Gandorfer A, Hirzberger J, et al. 2020. The polarimetric and helioseismic imager on solar orbiter. A&A 642: A11. https://doi.org/10.1051/0004-6361/201935325. [CrossRef] [EDP Sciences] [Google Scholar]
- Sun X, Hoeksema JT, Liu Y, Wiegelmann T, Hayashi K, Chen Q, Thalmann J. 2012. Evolution of magnetic field and energy in a major eruptive active region based on SDO/HMI observation. Astrophys J 748(2): 77. https://doi.org/10.1088/0004-637X/748/2/77. [Google Scholar]
- Tadesse T, Wiegelmann T, Gosain S, MacNeice P, Pevtsov AA. 2014. First use of synoptic vector magnetograms for global nonlinear, force-free coronal magnetic field models. A&A 562: A105. https://doi.org/10.1051/0004-6361/201322418. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Thalmann JK, Wiegelmann T. 2008. Evolution of the flaring active region NOAA 10540 as a sequence of nonlinear force-free field extrapolations. A&A 484(2): 495–502. https://doi.org/10.1051/0004-6361:200809508. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Tziotziou K, Georgoulis MK, Raouafi N-E. 2012. The magnetic energy-helicity diagram of solar active regions. Astrophys J Lett 759(1): L4. https://doi.org/10.1088/2041-8205/759/1/L4. [Google Scholar]
- Vourlidas A. 2015. Mission to the Sun-Earth L5 Lagrangian point: An optimal platform for space weather research. Space Weather 13(4): 197–201. https://doi.org/10.1002/2015SW001173. [CrossRef] [Google Scholar]
- Wiegelmann T, Thalmann JK, Solanki SK. 2014. The magnetic field in the solar atmosphere. A&A Rev. 22: 78. https://doi.org/10.1007/s00159-014-0078-7. [NASA ADS] [CrossRef] [Google Scholar]
- Yang D. 2018. Modeling experiments in helioseismic holography. Ph.D. Thesis, Georg-August-Universität Göttingen, Göttingen, Germany http://hdl.handle.net/21.11130/00-1735-0000-0003-C115-B. [Google Scholar]
- Yeates AR, Amari T, Contopoulos I, Feng X, Mackay DH, et al. 2018. Global non-potential magnetic models of the solar corona during the March 2015 eclipse. Space Sci Rev 214(5): 99. https://doi.org/10.1007/s11214-018-0534-1. [NASA ADS] [CrossRef] [Google Scholar]
- Zhao J, Hing D, Chen R, Hess Webber S. 2019. Imaging the Sun’s far-side active regions by applying multiple measurement schemes on multiskip acoustic waves. Astrophys J 887(2): 216. https://doi.org/10.3847/1538-4357/ab5951. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.