Issue |
J. Space Weather Space Clim.
Volume 10, 2020
Topical Issue - Space climate: The past and future of solar activity
|
|
---|---|---|
Article Number | 55 | |
Number of page(s) | 17 | |
DOI | https://doi.org/10.1051/swsc/2020057 | |
Published online | 13 November 2020 |
- Altschuler MD, Newkirk G. 1969. Magnetic Fields and the Structure of the Solar Corona. I: Methods of Calculating Coronal Fields. Sol Phys 9(1): 131. https://doi.org/10.1007/BF00145734. [NASA ADS] [CrossRef] [Google Scholar]
- Arge CN, Pizzo VJ. 2000. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J Geophys Res 105(A5): 10465. https://doi.org/10.1029/1999JA000262. [CrossRef] [Google Scholar]
- Belov AV, Eroshenko EA, Heber B, Yanke VG, Raviart A, Mller-Mellin R, Kunow H. 2003. Latitudinal and radial variation of >2 GeV/n protons and alpha-particles at solar maximum: Ulysses COSPIN/KET and neutron monitor network observations. Ann Geophys 21(6): 1295. https://doi.org/10.5194/angeo-21-1295-2003. [CrossRef] [Google Scholar]
- Bieber JW, Burger RAMatthaeus WH. 1995. The Diffusion Tensor throughout the Heliosphere. In: International Cosmic Ray Conference, vol. 4 of International Cosmic Ray Conference, p. 694 [Google Scholar]
- Bieber JW, Matthaeus WH. 1997. Perpendicular Diffusion and Drift at Intermediate Cosmic-Ray Energies. Astrophys J 485(2): 655. https://doi.org/10.1086/304464. [NASA ADS] [CrossRef] [Google Scholar]
- Bieber JW, Matthaeus WH, Shalchi A, Qin G. 2004. Nonlinear guiding center theory of perpendicular diffusion: General properties and comparison with observation. Geophys Res Lett 31(10): L10, 805. https://doi.org/10.1029/2004GL020007. [NASA ADS] [CrossRef] [Google Scholar]
- Bieber JW, Matthaeus WH, Smith CW, Wanner W, Kallenrode M-B, Wibberenz G. 1994. Proton and Electron Mean Free Paths: The Palmer Consensus Revisited. Astrophys J 420: 294. https://doi.org/10.1086/173559. [NASA ADS] [CrossRef] [Google Scholar]
- Brun AS, Browning MK. 2017. Magnetism, dynamo action and the solar-stellar connection. Living Rev Sol Phys 14(1): 4. https://doi.org/10.1007/s41116-017-0007-8. [NASA ADS] [CrossRef] [Google Scholar]
- Burger RA, Potgieter MS, Heber B. 2000. Rigidity dependence of cosmic ray proton latitudinal gradients measured by the Ulysses spacecraft: Implications for the diffusion tensor. J Geophys Res 105(A12): 27447. https://doi.org/10.1029/2000JA000153. [NASA ADS] [CrossRef] [Google Scholar]
- Chenette DL, Conlon TF, Pyle KR, Simpson JA. 1977. Observations of Jovian electrons at 1 AU throughout the 13 month Jovian synodic year. ApJL 215: L95–L99. https://doi.org/10.1086/182487. [NASA ADS] [CrossRef] [Google Scholar]
- Chhiber R, Subedi P, Usmanov AV, Matthaeus WH, Ruffolo D, Goldstein ML, Parashar TN. 2017. Cosmic-ray diffusion coefficients throughout the inner heliosphere from a global solar wind simulation. Astrophys J Suppl Ser 230(2): 21. https://doi.org/10.3847/1538-4365/aa74d2. [CrossRef] [Google Scholar]
- Cohen CMS, Christian ER, Cummings AC, Davis AJ, Desai MI, et al. 2020. Energetic particle increases associated with stream interaction regions. Astrophys J Suppl Ser 246(2): 20. https://doi.org/10.3847/1538-4365/ab4c38. [CrossRef] [Google Scholar]
- Cummings AC, Stone EC, Webber WR. 1987. Latitudinal and radial gradients of anomalous and galactic cosmic rays in the outer heliosphere. Geophys Res Lett 14(3): 174. https://doi.org/10.1029/GL014i003p00174. [NASA ADS] [CrossRef] [Google Scholar]
- Dedner A, Kemm F, Krner D, Munz C-D, Schnitzer T, Wesenberg M. 2002. Hyperbolic divergence cleaning for the MHD equations. J Comput Phys 175(2): 645. https://doi.org/10.1006/jcph.2001.6961. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- DeRosa ML, Brun AS, Hoeksema JT. 2012. Solar magnetic field reversals and the role of dynamo families. Astrophys J 757(1): 96. https://doi.org/10.1088/0004-637X/757/1/96. [NASA ADS] [CrossRef] [Google Scholar]
- Drge W. 2003. Solar particle transport in a dynamical quasi-linear theory. Astrophys J 589: 1027–1039. https://doi.org/10.1086/374812. [NASA ADS] [CrossRef] [Google Scholar]
- Dwyer JR, Mason GM, Mazur JE, Jokipii JR, von Rosenvinge TT, Lepping RP. 1997. Perpendicular transport of low-energy corotating interaction region–associated nuclei. Astrophys J 490(1): L115. https://doi.org/10.1086/311003. [NASA ADS] [CrossRef] [Google Scholar]
- Einfeldt B. 1988. On Godunov-type methods for gas dynamics. SIAM J Numer Anal 25(2): 294. https://doi.org/10.1137/0725021. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Engelbrecht NE, Burger RA. 2015. A comparison of turbulence-reduced drift coefficients of importance for the modulation of galactic cosmic-ray protons in the supersonic solar wind. Adv Space Res 55: 390–400. https://doi.org/10.1016/j.asr.2014.09.019, http://adsabs.harvard.edu/abs/2015AdSpR.55.390E. [NASA ADS] [CrossRef] [Google Scholar]
- Engelbrecht NE, Strauss RD, Le Roux JA, Burger RA. 2017. Toward a greater understanding of the reduction of drift coefficients in the presence of turbulence. Astrophys J 841: 107. https://doi.org/10.3847/1538-4357/aa7058, http://adsabs.harvard.edu/abs/2017ApJ.841.107E. [NASA ADS] [CrossRef] [Google Scholar]
- Finley AJ, Deshmukh S, Matt SP, Owens M, Wu C-J. 2019. Solar angular momentum loss over the past several millennia. Astrophys J 883: 67. https://doi.org/10.3847/1538-4357/ab3729. [CrossRef] [Google Scholar]
- Forman MA. 1977. The velocity correlation function in cosmic-ray diffusion theory. Astrophys Space Sci 49: 83–97. https://doi.org/10.1007/BF00647077. [NASA ADS] [CrossRef] [Google Scholar]
- Forman MA, Jokipii JR, Owens AJ. 1974. Cosmic-ray streaming perpendicular to the mean magnetic field. Astrophys J 192: 535–540. https://doi.org/10.1086/153087. [NASA ADS] [CrossRef] [Google Scholar]
- Giacalone J, Jokipii JR. 1999. The transport of cosmic rays across a turbulent magnetic field. Astrophys J 520: 204–214. https://doi.org/10.1086/307452. [NASA ADS] [CrossRef] [Google Scholar]
- Goldstein ML. 1976. A nonlinear theory of cosmic-ray pitch-angle diffusion in homogeneous magnetostatic turbulence. Astrophys J 204: 900–919. https://doi.org/10.1086/154239. [NASA ADS] [CrossRef] [Google Scholar]
- Grappin R, Léorat J, Leygnac S, Pinto R. 2010. Search for a self-consistent solar wind model. In: Twelfth International Solar Wind Conference. Maksimovic M, Issautier K, Meyer-Vernet N, Moncuquet M, Pantellini F, (Eds.), vol. 1216 of American Institute of Physics Conference Series, pp. 24–27. https://doi.org/10.1063/1.3395848 [Google Scholar]
- Green MS. 1951. Brownian motion in a gas of noninteracting molecules. J Chem Phys 19: 1036–1046. https://doi.org/10.1063/1.1748449. [NASA ADS] [CrossRef] [Google Scholar]
- Guo X, Florinski V. 2014. Galactic cosmic-ray modulation near the heliopause. Astrophys J 793(1): 18. https://doi.org/10.1088/0004-637X/793/1/18, https://iopscience.iop.org/article/10.1088/0004-637X/793/1/18. [NASA ADS] [CrossRef] [Google Scholar]
- Hathaway DH. 2015. The Solar Cycle. Living Rev Sol Phys 12(1): 4. https://doi.org/10.1007/lrsp-2015-4. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Heber B, Droege W, Ferrando P, Haasbroek LJ, Kunow H, Mueller-Mellin R, Paizis C, Potgieter MS, Raviart A, Wibberenz G. 1996. Spatial variation of > 40 MeV/n nuclei fluxes observed during the ULYSSES rapid latitude scan. Astron Astrophys 316: 538–546. [Google Scholar]
- Heber B, Potgieter MS. 2006. Cosmic rays at high heliolatitudes. Space Sci Rev 127(1–4): 117. https://doi.org/10.1007/s11214-006-9085-y. [NASA ADS] [CrossRef] [Google Scholar]
- Hoeksema JT. 2009. Evolution of the large-scale magnetic field over three solar cycles. Proc IAU 5(S264): 222–228. https://doi.org/10.1017/S1743921309992675. [CrossRef] [Google Scholar]
- Hollweg JV. 1986. Transition region, corona, and solar wind in coronal holes. J Geophys Res 91(A4): 4111. https://doi.org/10.1029/JA091iA04p04111. [NASA ADS] [CrossRef] [Google Scholar]
- Jokipii JR. 1966. Cosmic-ray propagation. I. Charged particles in a random magnetic field. Astrophys J 146: 480. https://doi.org/10.1086/148912. [NASA ADS] [CrossRef] [Google Scholar]
- Jokipii JR, Kopriva DA. 1979. Effects of particle drift on the transport of cosmic rays. III – Numerical models of galactic cosmic-ray modulation. Astrophys J 234: 384–392. https://doi.org/10.1086/157506, http://adsabs.harvard.edu/abs/1979ApJ..234.384J. [NASA ADS] [CrossRef] [Google Scholar]
- Jokipii JR, Levy EH. 1977. Effects of particle drifts on the solar modulation of galactic cosmic rays. Astrophys J 213: L85. https://doi.org/10.1086/182415, http://adsabs.harvard.edu/doi/10.1086/182415. [NASA ADS] [CrossRef] [Google Scholar]
- Jokipii JR, Parker EN. 1970. On the convection, diffusion, and adiabatic deceleration of cosmic rays in the solar wind. Astrophys J 160: 735. https://doi.org/10.1086/150465. [NASA ADS] [CrossRef] [Google Scholar]
- Jokipii JR, Thomas B. 1981. Effects of drift on the transport of cosmic rays. IV – Modulation by a wavy interplanetary current sheet. Astrophys J 243: 1115. https://doi.org/10.1086/158675, http://adsabs.harvard.edu/doi/10.1086/158675. [NASA ADS] [CrossRef] [Google Scholar]
- Keppens R, Goedbloed JP. 1999. Numerical simulations of stellar winds: polytropic models. Astron Astrophys 343: 251. [Google Scholar]
- Kim TK, Pogorelov NV, Arge CN, Henney CJ, Jones-Mecholsky SI, et al. 2020. Predicting the solar wind at Parker solar probe using an empirically driven MHD model. Astrophys J Suppl Ser 246(2): 40. https://doi.org/10.3847/1538-4365/ab58c9, http://arxiv.org/abs/1912.02397 [CrossRef] [Google Scholar]
- Kubo R. 1957. Statistical-Mechanical Theory of Irreversible Processes. I. J Phys Soc Jpn 12: 570–586. https://doi.org/10.1143/JPSJ.12.570. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Lee K, Pinsky L, Andersen V, Zeitlin C, Cleghorn T, Cucinotta F, Saganti P, Atwell W, Turner R. 2006. Helium cosmic ray flux measurements at Mars. Radiat Meas 41: 1123–1125. https://doi.org/10.1016/j.radmeas.2006.07.011. [CrossRef] [Google Scholar]
- Lionello R, Linker JA, Miki Z. 2001. Including the transition region in models of the large-scale solar corona. Astrophys J 546(1): 542. https://doi.org/10.1086/318254. [NASA ADS] [CrossRef] [Google Scholar]
- Lockwood JA, Webber WR. 2005. Intensities of galactic cosmic rays of 1.5 GV rigidity at Earth versus the heliospheric current sheet tilt. J Geophys Res Space Phys 110(A4): A04102. https://doi.org/10.1029/2004JA010880. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2004JA010880 [CrossRef] [Google Scholar]
- Lorenz RD, Lawrence DJ. 2015. Gamma rays and cosmic rays at Venus: The Pioneer Venus gamma ray detector and considerations for future measurements. Planet Space Sci 109–110: 129–134. https://doi.org/10.1016/j.pss.2015.02.009. [CrossRef] [Google Scholar]
- Luo X, Zhang M, Rassoul HK, Pogorelov NV, Heerikhuisen J. 2013. Galactic cosmic-ray modulation in a realistic global magnetohydrodynamic heliosphere. Astrophys J 764(1): 85. https://doi.org/10.1088/0004-637X/764/1/85, https://iopscience.iop.org/article/10.1088/0004-637X/764/1/85. [NASA ADS] [CrossRef] [Google Scholar]
- Manuel R, Ferreira SES, Potgieter MS, Strauss RD, Engelbrecht NE. 2011. Time-dependent cosmic ray modulation. Adv Space Res 47(9): 1529–1537. https://doi.org/10.1016/j.asr.2010.12.007, http://www.sciencedirect.com/science/article/pii/S0273117710007945. [CrossRef] [Google Scholar]
- Matt S, Pudritz RE. 2008. Accretion-powered Stellar Winds. II. Numerical Solutions for Stellar Wind Torques. Astrophys J 678(2): 1109. https://doi.org/10.1086/533428. [NASA ADS] [CrossRef] [Google Scholar]
- Matthaeus WH, Goldstein ML, Roberts DA. 1990. Evidence for the presence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind. J Geophys Res 95(20): 673. https://doi.org/10.1029/JA095iA12p20673. [NASA ADS] [CrossRef] [Google Scholar]
- Matthaeus WH, Qin G, Bieber JW, Zank GP. 2003. Nonlinear collisionless perpendicular diffusion of charged particles. Astrophys J 590(1): L53. https://doi.org/10.1086/376613. [NASA ADS] [CrossRef] [Google Scholar]
- McComas DJ, Christian ER, Cohen CMS, Cummings AC, Davis AJ, et al. 2019. Probing the energetic particle environment near the Sun. Nature 576: 223–227. https://doi.org/10.1038/s41586-019-1811-1. [CrossRef] [Google Scholar]
- McComas DJ, Elliott HA, Schwadron NA, Gosling JT, Skoug RM, Goldstein BE. 2003. The three-dimensional solar wind around solar maximum. Geophys Res Lett 30(10): 1517. https://doi.org/10.1029/2003GL017136. [NASA ADS] [CrossRef] [Google Scholar]
- McKibben RB. 1998. Three-dimensional Solar Modulation of Cosmic Ray and Anomalous Components in the Inner Heliosphere. Space Sci Rev 83: 21. https://doi.org/10.1023/A:1005044707585. [CrossRef] [Google Scholar]
- Mignone A, Bodo G, Massaglia S, Matsakos T, Tesileanu O, Zanni C, Ferrari A. 2007. PLUTO: A numerical code for computational astrophysics. Astrophys J Supple Ser 170(1): 228. https://doi.org/10.1086/513316. [Google Scholar]
- Moffatt HK. 1978. Magnetic field generation in electrically conducting fluids. Cambridge University Press. [Google Scholar]
- Mursula K, Hiltula T. 2003. Bashful ballerina: Southward shifted heliospheric current sheet. Geophys Res Lett 30(22): 2135. https://doi.org/10.1029/2003GL018201. [NASA ADS] [CrossRef] [Google Scholar]
- Neugebauer M, Snyder CW. 1962. Solar plasma experiment. Science 138(3545): 1095. https://doi.org/10.1126/science.138.3545.1095-a. [CrossRef] [Google Scholar]
- Oughton S, Matthaeus WH, Dmitruk P. 2017. Reduced MHD in astrophysical applications: Two-dimensional or three-dimensional? Astrophys J 839(1): 2. https://doi.org/10.3847/1538-4357/aa67e2, https://iopscience.iop.org/article/10.3847/1538-4357/aa67e2. [CrossRef] [Google Scholar]
- Oughton S, Matthaeus WH, Wan M, Osman KT. 2015. Anisotropy in solar wind plasma turbulence. Philos Trans R Soc London Ser A Math Phys Eng Sci 373(2041): 20140152. https://doi.org/10.1098/rsta.2014.0152 [Google Scholar]
- Owens MJ, Forsyth RJ. 2013. The Heliospheric magnetic field. Living Rev Sol Phys 10 (1): 5. https://doi.org/10.12942/lrsp-2013-5. [NASA ADS] [CrossRef] [Google Scholar]
- Palmer ID. 1982. Transport coefficients of low-energy cosmic rays in interplanetary space. Rev Geophys Space Phys 20: 335. https://doi.org/10.1029/RG020i002p00335. [NASA ADS] [CrossRef] [Google Scholar]
- Parker EN. 1958. Dynamics of the interplanetary gas and magnetic fields. Astrophys J 128: 664. https://doi.org/10.1086/146579. [NASA ADS] [CrossRef] [Google Scholar]
- Parker EN. 1964. The scattering of charged particles by magnetic irregularities. J Geophys Res 69: 1755–1758. https://doi.org/10.1029/JZ069i009p01755. [CrossRef] [Google Scholar]
- Parker EN. 1965. The passage of energetic charged particles through interplanetary space. Planet Space Sci 13(1): 9. https://doi.org/10.1016/0032-0633(65)90131-5. [NASA ADS] [CrossRef] [Google Scholar]
- Parker EN. 1993. A solar dynamo surface wave at the interface between convection and nonuniform rotation. Astrophys J 408: 707. https://doi.org/10.1086/172631. [NASA ADS] [CrossRef] [Google Scholar]
- Pei C, Bieber JW, Breech B, Burger RA, Clem J, Matthaeus WH. 2010. Cosmic ray diffusion tensor throughout the heliosphere. J Geophys Res Space Phys 115(A3): A03103. https://doi.org/10.1029/2009JA014705. [Google Scholar]
- Perri B, Brun AS, Réville V, Strugarek A. 2018. Simulations of solar wind variations during an 11-year cycle and the influence of north-south asymmetry. J Plasma Phys 84(5): 765840501. https://doi.org/10.1017/S0022377818000880. [CrossRef] [Google Scholar]
- Pinto RF, Rouillard AP. 2017. A Multiple flux-tube Solar Wind Model. Astrophys J 838(2): 89. https://doi.org/10.3847/1538-4357/aa6398. [CrossRef] [Google Scholar]
- Poluianov S, Kovaltsov GA, Usoskin IG. 2018. Solar energetic particles and galactic cosmic rays over millions of years as inferred from data on cosmogenic 26Al in lunar samples. Astron Astrophys 618: A96. https://doi.org/10.1051/0004-6361/201833561. [CrossRef] [EDP Sciences] [Google Scholar]
- Reames DV. 1999. Particle acceleration at the Sun and in the heliosphere. Space Sci Rev 90: 413. https://doi.org/10.1023/A:1005105831781. [NASA ADS] [CrossRef] [Google Scholar]
- Riley P, Lionello R, Linker JA, Cliver E, Balogh A, et al. 2015. Inferring the structure of the solar corona and inner heliosphere during the maunder minimum using global thermodynamic magnetohydrodynamic simulations. Astrophys J 802(2): 105. https://doi.org/10.1088/0004-637X/802/2/105. [NASA ADS] [CrossRef] [Google Scholar]
- Ruffolo D, Pianpanit T, Matthaeus WH, Chuychai P. 2012. Random ballistic interpretation of Nonlinear Guiding Center Theory. ApJL 747(2): L34. https://doi.org/10.1088/2041-8205/747/2/L34. [NASA ADS] [CrossRef] [Google Scholar]
- Réville V, Brun AS. 2017. Global solar magnetic field organization in the outer corona: Influence on the Solar wind speed and mass flux over the cycle. Astrophys J 850(1): 45. https://doi.org/10.3847/1538-4357/aa9218. [NASA ADS] [CrossRef] [Google Scholar]
- Réville V, Brun AS, Matt SP, Strugarek A, Pinto RF. 2015. The effect of magnetic topology on thermally driven wind: Toward a general formulation of the Braking Law. Astrophys J 798(2): 116. https://doi.org/10.1088/0004-637X/798/2/116. [Google Scholar]
- Réville V, Velli M, Panasenco O, Tenerani A, Shi C, et al. 2020. The Role of Alfvén wave dynamics on the large-scale properties of the solar wind: Comparing an MHD simulation with Parker Solar Probe E1 Data. Astrophys J Suppl Ser 246(2): 24. https://doi.org/10.3847/1538-4365/ab4fef. [NASA ADS] [CrossRef] [Google Scholar]
- Sakurai T. 1985. Magnetic stellar winds: a 2-D generalization of the Weber-Davis model. Astron Astrophys 152: 121. [Google Scholar]
- Schatten KH, Wilcox JM, Ness NF. 1969. A model of interplanetary and coronal magnetic fields. Sol Phys 6(3): 442. https://doi.org/10.1007/BF00146478. [NASA ADS] [CrossRef] [Google Scholar]
- Schrijver CJ, De Rosa ML. 2003. Photospheric and heliospheric magnetic fields. Sol Phys 212(1): 165. https://doi.org/10.1023/A:1022908504100. [NASA ADS] [CrossRef] [Google Scholar]
- Shalchi A. 2006. Extended nonlinear guiding center theory of perpendicular diffusion. Astron Astrophys 453(3): L43–L46. https://doi.org/10.1051/0004-6361:20065465, http://www.aanda.org/10.1051/0004-6361:20065465. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Shalchi A. 2009. Nonlinear cosmic ray diffusion theories, vol. 362. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00309-7 [CrossRef] [Google Scholar]
- Shalchi A. 2017. Time-dependent perpendicular transport of energetic particles in magnetic turbulence with transverse complexity. Phys Plasmas 24(050): 702. https://doi.org/10.1063/1.4982805, http://adsabs.harvard.edu/abs/2017PhPl..24e0702S. [CrossRef] [Google Scholar]
- Shalchi A. 2020. Perpendicular transport of energetic particles in magnetic turbulence. Space Sci Rev 216(2): 23. https://doi.org/10.1007/s11214-020-0644-4. [CrossRef] [Google Scholar]
- Shalchi A, Bieber JW, Matthaeus WH. 2004. Analytic forms of the perpendicular diffusion coefficient in magnetostatic turbulence. Astrophys J 604(2): 675–686. https://doi.org/10.1086/382128. [NASA ADS] [CrossRef] [Google Scholar]
- Snyder CW, Neugebauer M, Rao UR. 1963. The solar wind velocity and its correlation with cosmic-ray variations and with solar and geomagnetic activity. J Geophys Res 68: 6361. https://doi.org/10.1029/JZ068i024p06361. [CrossRef] [Google Scholar]
- Spruit HC. 1981. Magnetic flux tubes. In: The Sun as a Star, Monograph Series on Nonthermal Phenomena in Stellar Atmospheres, vol. 450, Jordan S, (Ed.) NASA Special Publications. pp. 385–413. [Google Scholar]
- Strugarek A, Brun AS, Matt SP, Réville V. 2015. Numerical Aspects of 3D Stellar Winds, in: 18th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, vol. 18, pp. 589–602. [Google Scholar]
- Suzuki TK, Imada S, Kataoka R, Kato Y, Matsumoto T, Miyahara H, Tsuneta S. 2013. Saturation of stellar winds from Young Suns. Publi Astron Soc Jpn 65: 98. https://doi.org/10.1093/pasj/65.5.98. [CrossRef] [Google Scholar]
- Taylor GI. 1922. The motion of a sphere in a rotating liquid. Proc R Soc London Ser A 102: 180–189. https://doi.org/10.1098/rspa.1922.0079. [CrossRef] [Google Scholar]
- Tu C-Y, Marsch E. 1995. Magnetohydrodynamic structures waves and turbulence in the solar wind – Observations and theories. Space Sci Rev 73(1–2): 1. https://doi.org/10.1007/BF00748891. [NASA ADS] [CrossRef] [Google Scholar]
- Tóth G, van der Holst B, Sokolov IV, De Zeeuw DL, Gombosi TI, et al. 2012. Adaptive numerical algorithms in space weather modeling. J Comput Phys 231(3): 870. https://doi.org/10.1016/j.jcp.2011.02.006. [NASA ADS] [CrossRef] [Google Scholar]
- Usmanov AV, Goldstein ML, Besser BP, Fritzer JM. 2000. A global MHD solar wind model with WKB Alfvén waves: Comparison with Ulysses data. J Geophys Res 105(A6): 12675. https://doi.org/10.1029/1999JA000233. [NASA ADS] [CrossRef] [Google Scholar]
- Usmanov AV, Goldstein ML, Matthaeus WH. 2014. Three-fluid, three-dimensional magnetohydrodynamic solar wind model with eddy viscosity and turbulent resistivity. Astrophys J 788(1): 43. https://doi.org/10.1088/0004-637X/788/1/43. [NASA ADS] [CrossRef] [Google Scholar]
- Wang Y-M, Sheeley NR. 1990. Magnetic flux transport and the sunspot-cycle evolution of coronal holes and their wind streams. Astrophys J 365: 372. https://doi.org/10.1086/169492. [NASA ADS] [CrossRef] [Google Scholar]
- Webber WR, Heber B, Lockwood JA. 2005. Time variations of cosmic ray electrons and nuclei between 1978 and 2004: Evidence for charge-dependent modulation organized by changes in solar magnetic polarity and current sheet tilt. J Geophys Res Space Phys 110(A12): https://doi.org/10.1029/2005JA011291, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005JA011291. [Google Scholar]
- Weber EJ, Davis L. 1967. The angular momentum of the solar wind. Astrophys J 148: 217. https://doi.org/10.1086/149138. [Google Scholar]
- Wiengarten T, Oughton S, Engelbrecht NE, Fichtner H, Kleimann J, Scherer K. 2016. A generalized two-component model of solar wind turbulence and ab initio diffusion mean-free paths and drift lengthscales of cosmic rays. Astrophys J 833(1): 17. https://doi.org/10.3847/0004-637X/833/1/17, https://iopscience.iop.org/article/10.3847/0004-637X/833/1/17. [CrossRef] [Google Scholar]
- Zank GP, Matthaeus WH, Bieber JW, Moraal H. 1998. The radial and latitudinal dependence of the cosmic ray diffusion tensor in the heliosphere. J Geophys Res 103(A2): 2085. https://doi.org/10.1029/97JA03013. [NASA ADS] [CrossRef] [Google Scholar]
- Zhang M, Jokipii JR, McKibben RB. 2003. Perpendicular transport of solar energetic particles in heliospheric magnetic fields. Astrophys J 595(1): 493. https://doi.org/10.1086/377301. [NASA ADS] [CrossRef] [Google Scholar]
- Zhang M, Qin G, Rassoul H. 2009. Propagation of solar energetic particles in three-dimensional interplanetary magnetic fields. Astrophys J 692(1): 109–132. https://doi.org/10.1088/0004-637X/692/1/109. [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.