Open Access
Issue |
J. Space Weather Space Clim.
Volume 11, 2021
|
|
---|---|---|
Article Number | 7 | |
Number of page(s) | 20 | |
DOI | https://doi.org/10.1051/swsc/2020072 | |
Published online | 28 January 2021 |
- Altschuler MD, Newkirk G. 1969. Magnetic fields and the structure of the solar corona. I: Methods of calculating coronal fields. Sol Phys 9(1): 131–149. https://doi.org/10.1007/BF00145734. [NASA ADS] [CrossRef] [Google Scholar]
- Arge CN, Henney CJ, Hernandez IG, Toussaint WA, Koller J, Godinez HC. 2013. Modeling the corona and solar wind using ADAPT maps that include far-side observations. In: Solar Wind 13, vol. 1539 of American Institute of Physics Conference Series. Zank GP, Borovsky J, Bruno R, Cirtain J, Cranmer S, Elliott H, Giacalone J, Gonzalez W, Li G, Marsch E, Moebius E, Pogorelov N, Spann J, Verkhoglyadova O, (Eds.), pp. 11–14. https://doi.org/10.1063/1.4810977. [Google Scholar]
- Arge CN, Henney CJ, Koller J, Compeau CR, Young S, MacKenzie D, Fay A, Harvey JW. 2010. Air Force Data Assimilative Photospheric Flux Transport (ADAPT) Model. In: Twelfth International Solar Wind Conference, vol. 1216 ofAmerican Institute of Physics Conference Series. Maksimovic M, Issautier K, Meyer-Vernet N, Moncuquet M, Pantellini F, (Eds.), pp. 343–346. https://doi.org/10.1063/1.3395870. [Google Scholar]
- Arge CN, Pizzo VJ. 2000. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J Geophys Res Space Phys 105(A5): 10465–10480. https://doi.org/10.1029/1999JA000262. [CrossRef] [Google Scholar]
- Aschwanden MJ. 2016. The vertical-current approximation nonlinear force-free field code – description performance tests, and measurements of magnetic energies dissipated in solar flares. Astrophys J Suppl Ser 224(2): 25. https://doi.org/10.3847/0067-0049/224/2/25. [CrossRef] [Google Scholar]
- Asvestari E, Heinemann SG, Temmer M, Pomoell J, Kilpua E, Magdalenic J, Poedts S. 2019. Reconstructing coronal hole areas with EUHFORIA and adapted WSA Model: Optimizing the model parameters. J Geophys Res Space Phys 124(11): 8280–8297. https://doi.org/10.1029/2019JA027173. [CrossRef] [Google Scholar]
- Badruddin A, Singh YP. 2009. Geoeffectiveness of magnetic cloud, shock/sheath, interaction region, high-speed stream and their combined occurrence. Planet Space Sci 57(3): 318–331. https://doi.org/10.1016/j.pss.2008.12.009. [CrossRef] [Google Scholar]
- Balsara DS, Spicer DS. 1999. A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J Comput Phys 149(2): 270–292. https://doi.org/10.1006/jcph.1998.6153. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Behannon KW. 1978. Heliocentric distance dependence of the interplanetary magnetic field. Rev Geophysics Space Phys 16: 125–145. https://doi.org/10.1029/RG016i001p00125. [NASA ADS] [CrossRef] [Google Scholar]
- Burlaga LF. 1974. Interplanetary stream interfaces. J Geophys Res 79(25): 3717. https://doi.org/10.1029/JA079i025p03717. [CrossRef] [Google Scholar]
- Burlaga LF. 1983. Heliospheric magnetic fields and plasmas. Rev Geophys Space Phys 21: 363–375. https://doi.org/10.1029/RG021i002p00363. [CrossRef] [Google Scholar]
- Cargill PJ, Harra LK. 2007. Coronal Mass Ejection. In: Handbook of the Solar-Terrestrial Environment, chap. 5, 1st edn. Kamide Y, Chian AC-L, (Eds.). Springer-Verlag, Springer, Berlin Heidelberg New York. pp. 118–132. ISBN 978-3-540-46314-6. https://doi.org/10.1007/b104478. [Google Scholar]
- Courant R, Friedrichs K, Lewy H. 1928. Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen 100: 32–74. https://doi.org/10.1007/BF01448839. [Google Scholar]
- Cranmer SR. 2002. Coronal Holes and the High-Speed Solar Wind. Space Sci Rev 101: 229–294. https://doi.org/10.1023/A:1020840004535. [NASA ADS] [CrossRef] [Google Scholar]
- De Rosa ML, Schrijver CJ, Barnes G, Leka KD, Lites BW, et al. 2009. A critical assessment of nonlinear force-free field modeling of the solar corona for active region 10953. Astrophys J 696(2): 1780–1791. https://doi.org/10.1088/0004-637X/696/2/1780. [NASA ADS] [CrossRef] [Google Scholar]
- Dedner A, Kemm F, Kröner D, Munz CD, Schnitzer T, Wesenberg M. 2002. Hyperbolic divergence cleaning for the MHD equations. J Comput Phys 175(2): 645–673. https://doi.org/10.1006/jcph.2001.6961. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Domingo V, Fleck B, Poland AI. 1995. SOHO: The Solar and Heliospheric Observatory. Space Sci Rev 72(1–2): 81–84. https://doi.org/10.1007/BF00768758. [NASA ADS] [CrossRef] [Google Scholar]
- Dryer M. 1974. Interplanetary shock waves generated by solar flaresSpace Sci Rev 15(4): 403–468. https://doi.org/10.1007/BF00178215. [CrossRef] [Google Scholar]
- Feng X, Ma X, Xiang C. 2015. Data-driven modeling of the solar wind from 1 Rs to 1 AU. J Geophys Res Space Phys 120(12): 10159–10174. https://doi.org/10.1002/2015JA021911. [CrossRef] [Google Scholar]
- Florens MSL, Cairns IH, Knock SA, Robinson PA. 2007. Data-driven solar wind model and prediction of type II bursts. Geophys Res Lett 34(4): L04104. https://doi.org/10.1029/2006GL028522. [Google Scholar]
- Forbes TG. 2000. A review on the genesis of coronal mass ejections. J Geophys Res 105(A10): 23153–23166. https://doi.org/10.1029/2000JA000005. [CrossRef] [Google Scholar]
- Gardiner TA, Stone JM. 2005. An unsplit Godunov method for ideal MHD via constrained transport. J Comput Phys 205(2): 509–539. https://doi.org/10.1016/j.jcp.2004.11.016. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Gerontidou M, Mavromichalaki H, Daglis T. 2018. High-Speed Solar Wind Streams and Geomagnetic Storms During Solar Cycle 24. Sol Phys 293(9): 131. https://doi.org/10.1007/s11207-018-1348-8. [CrossRef] [Google Scholar]
- González Hernández I, Hill F, Lindsey C. 2007. Calibration of seismic signatures of active regions on the far side of the Sun. Astrophys J 669(2): 1382–1389. https://doi.org/10.1086/521592. [CrossRef] [Google Scholar]
- Gosling JT, Pizzo VJ. 1999. Formation and evolution of corotating interaction regions and their three dimensional structure. Space Sci Rev 89: 21–52. https://doi.org/10.1023/A:1005291711900. [NASA ADS] [CrossRef] [Google Scholar]
- Gressl C, Veronig AM, Temmer M, Odstrčil D, Linker JA, Mikić Z, Riley P. 2014. Comparative study of MHD modeling of the background solar wind. Sol Phys 289(5): 1783–1801. https://doi.org/10.1007/s11207-013-0421-6. [NASA ADS] [CrossRef] [Google Scholar]
- Hapgood M. 2017. L1L5Together: Report of workshop on future missions to monitor space weather on the Sun and in the solar wind using both the L1 and L5 Lagrange points as valuable viewpoints. Space Weather 15(5): 654–657. https://doi.org/10.1002/2017SW001652. [CrossRef] [Google Scholar]
- Harten R, Clark K. 1995. The design features of the GGS wind and polar spacecraft. Space Sci Rev 71(1–4): 23–40. https://doi.org/10.1007/BF00751324. [CrossRef] [Google Scholar]
- Harvey JW, Hill F, Hubbard RP, Kennedy JR, Leibacher JW, et al. 1996. The Global Oscillation Network Group (GONG) Project. Science 272(5266): 1284–1286. https://doi.org/10.1126/science.272.5266.1284. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- He HQ, Qin G, Zhang M. 2011. Propagation of solar energetic particles in three-dimensional interplanetary magnetic fields: In view of characteristics of sources. Astrophys J 734(2): 74. https://doi.org/10.1088/0004-637X/734/2/74. [NASA ADS] [CrossRef] [Google Scholar]
- Hellinger P, Matteini L, Štverák S, Trávníček PM, Marsch E. 2011. Heating and cooling of protons in the fast solar wind between 0.3 and 1 AU: Helios revisited. J Geophys Res Space Phys 116(A9): A09105. https://doi.org/10.1029/2011JA016674. https://ui.adsabs.harvard.edu/abs/2011JGRA..116.9105H/abstract. [Google Scholar]
- Hinterreiter J, Magdalenic J, Temmer M, Verbeke C, Jebaraj IC, et al. 2019. Assessing the performance of EUHFORIA modeling the background solar wind. Sol Phys 294(12): 170. https://doi.org/10.1007/s11207-019-1558-8. [CrossRef] [Google Scholar]
- Hoeksema JT. 1984. Structure and evolution of the large scale solar and heliospheric magnetic fields, Ph.D. Thesis. Stanford Univ, CA. Available at https://ntrs.nasa.gov/citations/19850002589. [Google Scholar]
- Hosteaux S, Chané E, Decraemer B, Talpeanu DC, Poedts S. 2018. Ultrahigh-resolution model of a breakout CME embedded in the solar wind. Astron Astrophys 620: A57. https://doi.org/10.1051/0004-6361/201832976. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Howard TA, Tappin SJ. 2009. Interplanetary coronal mass ejections observed in the heliosphere: 1. Review of Theory. Space Sci Rev 147(1–2): 31–54. https://doi.org/10.1007/s11214-009-9542-5. [NASA ADS] [CrossRef] [Google Scholar]
- Hundhausen AJ. 1972. Coronal expansion and solar wind. Phys Chem Space 5: 147–148. https://doi.org/10.1007/978-3-642-65414-5. [Google Scholar]
- Jian LK, Luhmann JG, Russell CT, Galvin AB. 2019. Solar Terrestrial Relations Observatory (STEREO) Observations of stream interaction regions in 2007–2016: Relationship with heliospheric current sheets, solar cycle variations, and dual observations. Sol Phys 294(3): 31. https://doi.org/10.1007/s11207-019-1416-8. [NASA ADS] [CrossRef] [Google Scholar]
- Jian LK, MacNeice PJ, Mays ML, Taktakishvili A, Odstrcil D, Jackson B, Yu HS, Riley P, Sokolov IV. 2016. Validation for global solar wind prediction using Ulysses comparison: Multiple coronal and heliospheric models installed at the Community Coordinated Modeling Center. Space Weather 14(8): 592–611. https://doi.org/10.1002/2016SW001435. [CrossRef] [Google Scholar]
- Kamide Y, Maltsev YP. 2007. Geomagnetic storms. In: Handbook of the Solar-Terrestrial Environment, chap. 14, 1st edn. Kamide Y, Chian AC-L, (Eds.). Springer-Verlag, Springer, Berlin Heidelberg New York. pp. 356–374. ISBN 978-3-540-46314-6. https://doi.org/10.1007/b104478. [Google Scholar]
- Klein LW, Burlaga LF. 1982. Interplanetary magnetic clouds at 1 AU. J Geophys Res 87(A2): 613–624. https://doi.org/10.1029/JA087iA02p00613. [Google Scholar]
- Lang M, Browne P, van Leeuwen PJ, Owens M. 2017. Data assimilation in the solar wind: challenges and first results. Space Weather 15(11): 1490–1510. https://doi.org/10.1002/2017SW001681. [CrossRef] [Google Scholar]
- Lang M, Owens MJ. 2019. A variational approach to data assimilation in the solar wind. Space Weather 17(1): 59–83. https://doi.org/10.1029/2018SW001857. [CrossRef] [Google Scholar]
- Lee CO, Luhmann JG, Hoeksema JT, Sun X, Arge CN, de Pater I. 2011. Coronal field opens at lower height during the solar cycles 22 and 23 minimum periods: IMF comparison suggests the source surface should be lowered. Sol Phys 269(2): 367–388. https://doi.org/10.1007/s11207-010-9699-9. [NASA ADS] [CrossRef] [Google Scholar]
- Lee CO, Luhmann JG, Odstrcil D, MacNeice PJ, de Pater I, Riley P, Arge CN. 2009. The solar wind at 1 AU during the declining phase of solar cycle 23: Comparison of 3D numerical model results with observations. Sol Phys 254(1): 155–183. https://doi.org/10.1007/s11207-008-9280-y. [NASA ADS] [CrossRef] [Google Scholar]
- MacNeice P, Jian LK, Antiochos SK, Arge CN, Bussy-Virat CD, et al. 2018. Assessing the quality of models of the ambient solar wind. Space Weather 16(11): 1644–1667. https://doi.org/10.1029/2018SW002040. [CrossRef] [Google Scholar]
- Maloney SA, Gallagher PT. 2010. Solar wind drag and the kinematics of interplanetary coronal mass ejectionsAstrophys J Lett 724(2): L127–L132. https://doi.org/10.1088/2041-8205/724/2/L127. [NASA ADS] [CrossRef] [Google Scholar]
- Mandrini CH, Nuevo FA, Vásquez AM, Démoulin P, van Driel-Gesztelyi L, Baker D, Culhane JL, Cristiani GD, Pick M. 2014. How can active region plasma escape into the solar wind from below a closed helmet streamer? Sol Phys 289(11): 4151–4171. https://doi.org/10.1007/s11207-014-0582-y. [NASA ADS] [CrossRef] [Google Scholar]
- Marshak A, Herman J, Adam S, Karin B, Carn S, et al. 2018. Earth Observations from DSCOVR EPIC Instrument. Bull Am Meteorol Soc 99(9): 1829–1850. https://doi.org/10.1175/BAMS-D-17-0223.1. [CrossRef] [Google Scholar]
- Mignone A. 2014. High-order conservative reconstruction schemes for finite volume methods in cylindrical and spherical coordinates. J Comput Phys 270: 784–814. https://doi.org/10.1016/j.jcp.2014.04.001. [CrossRef] [Google Scholar]
- Mignone A, Bodo G, Massaglia S, Matsakos T, Tesileanu O, Zanni C, Ferrari A. 2007. PLUTO: A numerical code for computational astrophysics. Astrophys J Suppl Ser 170(1): 228–242. https://doi.org/10.1086/513316. [NASA ADS] [CrossRef] [Google Scholar]
- Mignone A, Tzeferacos P. 2010. A second-order unsplit Godunov scheme for cell-centered MHD: The CTU-GLM scheme. J Comput Phys 229(6): 2117–2138. https://doi.org/10.1016/j.jcp.2009.11.026. [CrossRef] [Google Scholar]
- Mignone A, Zanni C, Tzeferacos P, van Straalen B, Colella P, Bodo G. 2012. The PLUTO Code for adaptive mesh computations in astrophysical fluid dynamics. Astrophys J Suppl Ser 198(1): 7. https://doi.org/10.1088/0067-0049/198/1/7. [NASA ADS] [CrossRef] [Google Scholar]
- Mikić Z, Downs C, Linker JA, Caplan RM, et al. 2018. Predicting the corona for the 21 August 2017 total solar eclipse. Nature Astron 2: 913–921. https://doi.org/10.1038/s41550-018-0562-5. [NASA ADS] [CrossRef] [Google Scholar]
- Mikić Z, Linker JA, Schnack DD, Lionello R, Tarditi A. 1999. Magnetohydrodynamic modeling of the global solar corona. Phys Plasmas 6(5): 2217–2224. https://doi.org/10.1063/1.873474. [NASA ADS] [CrossRef] [Google Scholar]
- Müller D, Marsden RG, St. Cyr OC, Gilbert HR. 2013. Solar orbiter. Exploring the Sun-heliosphere connectionSol Phys 285(1–2): 25–70. https://doi.org/10.1007/s11207-012-0085-7. [CrossRef] [Google Scholar]
- Ness NF, Burlaga LF. 2001. Spacecraft studies of the interplanetary magnetic field. J Geophys Res 106(A8): 15803–15818. https://doi.org/10.1029/2000JA000118. [CrossRef] [Google Scholar]
- Neugebauer M, Liewer PC, Smith EJ, Skoug RM, Zurbuchen TH. 2002. Sources of the solar wind at solar activity maximum. J Geophys ResSpace Phys 107(A12): 1488. https://doi.org/10.1029/2001JA000306. [Google Scholar]
- Nitta NV, Reames DV, De Rosa ML, Liu Y, Yashiro S, Gopalswamy N. 2006. Solar sources of impulsive solar energetic particle events and their magnetic field connection to the Earth. Astrophys J 650(1): 438–450. https://doi.org/10.1086/507442. [NASA ADS] [CrossRef] [Google Scholar]
- Nolte JT, Roelof EC. 1973. Large-scale structure of the interplanetary medium. II: Evolving magnetic configurations deduced from multi-spacecraft observations. Sol Phys 33(2): 483–504. https://doi.org/10.1007/BF00152435. [NASA ADS] [CrossRef] [Google Scholar]
- Owens MJ, Lang M, Riley P, Stansby D. 2019. Towards construction of a solar wind “reanalysis” dataset: Application to the first Perihelion pass of Parker solar probe. Sol Phys 294(6): 83. https://doi.org/10.1007/s11207-019-1479-6. [CrossRef] [Google Scholar]
- Panasenco O, Velli M, D’Amicis R, Shi C, Réville V, et al. 2020. Exploring solar wind origins and connecting plasma flows from the Parker Solar Probe to 1 AU: Nonspherical source surface and Alfvénic fluctuations. Astrophys J Suppl Ser 246(2): 54. https://doi.org/10.3847/1538-4365/ab61f4. [CrossRef] [Google Scholar]
- Parker EN. 1958. Dynamics of the interplanetary gas and magnetic fieldsAstrophys J 128: 664. https://doi.org/10.1086/146579. [NASA ADS] [CrossRef] [Google Scholar]
- Pei C, Jokipii JR, Giacalone J. 2006. Effect of a random magnetic field on the onset times of solar particle events. Astrophys J 641(2): 1222–1226. https://doi.org/10.1086/427161. [CrossRef] [Google Scholar]
- Perrone D, Stansby D, Horbury TS, Matteini L. 2019. Radial evolution of the solar wind in pure high-speed streams: HELIOS revised observations. Mon Not R Astron Soc 483(3): 3730–3737. https://doi.org/10.1093/mnras/sty3348. [NASA ADS] [CrossRef] [Google Scholar]
- Pinto RF, Rouillard AP. 2017. A multiple flux-tube solar wind model. Astrophys J 838(2): 89. https://doi.org/10.3847/1538-4357/aa6398. [CrossRef] [Google Scholar]
- Pizzo V, Millward G, Parsons A, Biesecker D, Hill S, Odstrcil D. 2011. Wang-Sheeley-Arge-Enlil Cone Model transitions to operations. Space Weather 9(3): 03004. https://doi.org/10.1029/2011SW000663. [Google Scholar]
- Pizzo VJ. 1981. On the application of numerical models to the inverse mapping of solar wind flow structures. J Geophys Res 86(A8): 6685–6690. https://doi.org/10.1029/JA086iA08p06685. [CrossRef] [Google Scholar]
- Pomoell J, Poedts S. 2018. EUHFORIA: European heliospheric forecasting information asset. J Space Weather Space Clim 8: A35. https://doi.org/10.1051/swsc/2018020. [CrossRef] [Google Scholar]
- Réville V, Brun AS. 2017. Global solar magnetic field organization in the outer corona: Influence on the solar wind speed and mass flux over the cycle. Astrophys J 850(1): 45. https://doi.org/10.3847/1538-4357/aa9218. [NASA ADS] [CrossRef] [Google Scholar]
- Riley P, Linker JA, Mikić Z, Lionello R, Ledvina SA, Luhmann JG. 2006. A comparison between global solar magnetohydrodynamic and potential field source surface model results. Astrophys J 653(2): 1510–1516. https://doi.org/10.1086/508565. [NASA ADS] [CrossRef] [Google Scholar]
- Riley P, Linker JA, Mikič Z. 2013. Ensemble modeling of the ambient solar wind. In: Solar Wind 13, vol. 1539 of American Institute of Physics Conference Series. Zank GP, Borovsky J, Bruno R, Cirtain J, Cranmer S, Elliott H, Giacalone J, Gonzalez W, Li G, Marsch E, Moebius E, Pogorelov N, Spann J, Verkhoglyadova O, (Eds.). pp. 259–262. https://doi.org/10.1063/1.4811037 [Google Scholar]
- Riley P, Lionello R, Linker JA, Mikic Z, Luhmann J, Wijaya J. 2011. Global MHD Modeling of the solar corona and inner heliosphere for the whole heliosphere interval. Sol Phys 274(1–2): 361–377. https://doi.org/10.1007/s11207-010-9698-x. [NASA ADS] [CrossRef] [Google Scholar]
- Riley P, Mays ML, Andries J, Amerstorfer T, Biesecker D, et al. 2018. Forecasting the arrival time of coronal mass ejections: Analysis of the CCMC CME scoreboard. Space Weather 16(9): 1245–1260. https://doi.org/10.1029/2018SW001962. [NASA ADS] [CrossRef] [Google Scholar]
- Ruffolo D, Matthaeus WH, Chuychai P. 2003. Trapping of solar energetic particles by the small-scale topology of solar wind turbulence. Astrophys J Lett 597(2): L169–L172. https://doi.org/10.1086/379847. [NASA ADS] [CrossRef] [Google Scholar]
- Schatten KH. 1971. Current sheet magnetic model for the solar corona. Cosmic Electrodyn 2: 232–245. [Google Scholar]
- Schatten KH, Ness NF, Wilcox JM. 1968. Influence of a solar active region on the interplanetary magnetic field. Sol Phys 5(2): 240–256. https://doi.org/10.1007/BF00147968. [CrossRef] [Google Scholar]
- Schrijver CJ. 2015. Socio-economic hazards and impacts of space weather: The important range between mild and extreme. Space Weather 13(9): 524–528. https://doi.org/10.1002/2015SW001252. [CrossRef] [Google Scholar]
- Schulte in den Bäumen H, Cairns IH, Robinson PA. 2011. Modeling 1 AU solar wind observations to estimate azimuthal magnetic fields at the solar source surface. Geophys Res Lett 38(24): L24101. https://doi.org/10.1029/2011GL049578. [CrossRef] [Google Scholar]
- Schwenn R. 2006. Space Weather: The solar perspective. Liv Rev Sol Phys 3(1): 2. https://doi.org/10.12942/lrsp-2006-2 [Google Scholar]
- Sheeley NR Jr, Wang YM. 1991. Magnetic field configurations associated with fast solar wind. Sol Phys 131(1): 165–186. https://doi.org/10.1007/BF00151752. [CrossRef] [Google Scholar]
- Sheeley NR Jr. 2017. Origin of the Wang–Sheeley–Arge solar wind model. History Geo and Space Sci 8(1): 21–28. https://doi.org/10.5194/hgss-8-21-2017, https://hgss.copernicus.org/articles/8/21/2017/. [CrossRef] [Google Scholar]
- Snodgrass HB, Ulrich RK. 1990. Rotation of Doppler features in the solar photosphere. Astrophys J 351: 309. https://doi.org/10.1086/168467. [NASA ADS] [CrossRef] [Google Scholar]
- Stone EC, Frandsen AM, Mewaldt RA, Christian ER, Margolies D, Ormes JF, Snow F. 1998. The advanced composition explorer. Space Sci Rev 86: 1–22. https://doi.org/10.1023/A:1005082526237. [NASA ADS] [CrossRef] [Google Scholar]
- Tasnim S, Cairns IH. 2016. An equatorial solar wind model with angular momentum conservation and nonradial magnetic fields and flow velocities at an inner boundary. J Geophys Res Space Phys 121(6): 4966–4984. https://doi.org/10.1002/2016JA022725. [CrossRef] [Google Scholar]
- Tasnim S, Cairns IH, Wheatland MS. 2018. A generalized equatorial model for the accelerating solar wind. J Geophys Res Space Phys 123(2): 1061–1085. https://doi.org/10.1002/2017JA024532. [CrossRef] [Google Scholar]
- Temmer M, Nitta NV. 2015. Interplanetary propagation behavior of the fast coronal mass ejection on 23 July 2012. Sol Phys 290(3): 919–932. https://doi.org/10.1007/s11207-014-0642-3. [NASA ADS] [CrossRef] [Google Scholar]
- van der Holst B, Jacobs C, Poedts S. 2007. Simulation of a breakout coronal mass ejection in the solar wind. Astrophys J Lett 671(1): L77–L80. https://doi.org/10.1086/524732. [CrossRef] [Google Scholar]
- van der Holst B, Sokolov IV, Meng X, Jin M, Manchester IV WB, Tóth G, Gombosi TI. 2014. Alfvén Wave Solar Model (AWSoM): Coronal Heating. Astrophys J 782(2): 81. https://doi.org/10.1088/0004-637X/782/2/81. [NASA ADS] [CrossRef] [Google Scholar]
- Vršnak B, Dumbović M, Čalogović J, Verbanac G, Poljančić Beljan I. 2017. Geomagnetic effects of corotating interaction regions. Sol Phys 292(9): 140. https://doi.org/10.1007/s11207-017-1165-5. [CrossRef] [Google Scholar]
- Vršnak B, Žic T, Vrbanec D, Temmer M, Rollett T, et al. 2013. Propagation of interplanetary coronal mass ejections: The Drag-Based Model. 285 285(1–2): 295–315. https://doi.org/10.1007/s11207-012-0035-4. [Google Scholar]
- Wang YM, Sheeley NR Jr. 1990. Solar Wind speed and coronal flux-tube expansion. Astrophys J 355: 726. https://doi.org/10.1086/168805. [NASA ADS] [CrossRef] [Google Scholar]
- Wang YM, Sheeley NR Jr 1992. The relationship between solar wind speed and the areal expansion factor. In Marsch E, Schwenn R, (Eds.), Solar Wind Seven Colloquium, pp. 125–128. [CrossRef] [Google Scholar]
- Weber EJ, Davis L. 1967. The Angular Momentum of the Solar Wind. Astrophys J 148: 217–227. https://doi.org/10.1086/149138. [Google Scholar]
- Wilcox JM. 1968. The interplanetary magnetic field solar origin and terrestrial effects. Space Sci Rev 8(2): 258–328. https://doi.org/10.1007/BF00227565. [NASA ADS] [CrossRef] [Google Scholar]
- Wöhl H, Brajša R, Hanslmeier A, Gissot SF. 2010. A precise measurement of the solar differential rotation by tracing small bright coronal structures in SOHO-EIT images. Results and comparisons for the period 1998–2006. Astron Astrophys 520: A29. https://doi.org/10.1051/0004-6361/200913081. [CrossRef] [EDP Sciences] [Google Scholar]
- Yang LP, Feng XS, Xiang CQ, Liu Y, Zhao X, Wu ST. 2012. Time-dependent MHD modeling of the global solar corona for year 2007: Driven by daily-updated magnetic field synoptic data. J Geophys ResSpace Phys 117(A8): A08110. https://doi.org/10.1029/2011JA017494. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.