Open Access
Issue |
J. Space Weather Space Clim.
Volume 11, 2021
|
|
---|---|---|
Article Number | 8 | |
Number of page(s) | 25 | |
DOI | https://doi.org/10.1051/swsc/2020068 | |
Published online | 28 January 2021 |
- Alfvén H. 1957. On the theory of comet tails. Tellus 9(1): 92–96. https://doi.org/10.3402/tellusa.v9i1.9064. [Google Scholar]
- Altschuler MD, Newkirk G. 1969. Magnetic fields and the structure of the solar corona. Sol Phys 9(1): 131–149. https://doi.org/10.1007/BF00145734. [NASA ADS] [CrossRef] [Google Scholar]
- Altschuler M, Levine R, Stix M, Harvey J. 1977. High resolution mapping of the magnetic field of the solar corona. Sol Phys 51(2): 345–375. https://doi.org/10.1007/BF00216372. [NASA ADS] [CrossRef] [Google Scholar]
- Araujo-Pradere EA. 2009. Transitioning space weather models into operations: The basic building blocks. Space Weather 7(10): S10006. https://doi.org/10.1029/2009SW000524. [Google Scholar]
- Arge CN, Pizzo VJ. 2000. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J Geophys Res: Space Phys 105(A5): 10465–10479. https://doi.org/10.1029/1999JA000262. [CrossRef] [Google Scholar]
- Arge CN, Odstrcil D, Pizzo VJ, Mayer LR. 2003. Improved method for specifying solar wind speed near the Sun. In: Solar wind ten, Vol. 679 of American Institute of Physics Conference Series, pp. 190–193. https://doi.org/10.1063/1.1618574. [NASA ADS] [CrossRef] [Google Scholar]
- Arge CN, Henney CJ, Koller J, Compeau CR, Young S, MacKenzie D, Fay A, Harvey JW. 2010. Air force data assimilative photospheric flux transport (ADAPT) model. AIP Conf Proc 1216(1): 343–346. https://doi.org/10.1063/1.3395870. [CrossRef] [Google Scholar]
- Baker DN, Poh G, Odstrcil D, Arge CN, Benna M, et al. 2013. Solar wind forcing at Mercury: WSA-ENLIL model results. J Geophys Res: Space Phys 118(1): 45–57. https://doi.org/10.1029/2012JA018064. [NASA ADS] [CrossRef] [Google Scholar]
- Boteler DH. 2019. A 21st century view of the March 1989 magnetic storm. Space Weather 17(10): 1427–1441. https://doi.org/10.1029/2019SW002278. [CrossRef] [Google Scholar]
- Butcher J. 1996. A history of Runge-Kutta methods. Appl Numer Math 20(3): 247–260. https://doi.org/10.1016/0168-9274(95)00108-5. [CrossRef] [Google Scholar]
- Detman T, Smith Z, Dryer M, Fry CD, Arge CN, Pizzo V. 2006. A hybrid heliospheric modeling system: Background solar wind. J Geophys Res: Space Phys 111(A7): A07102. https://doi.org/10.1029/2005JA011430. [NASA ADS] [CrossRef] [Google Scholar]
- Einfeldt B. 1988. On Godunov-type methods for gas dynamics. SIAM J Numer Anal 25: 294–318. https://doi.org/10.1137/0725021. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Feng X, Yang L, Xiang C, Wu ST, Zhou Y, Zhong D. 2010. Three-dimensional solar wind modeling from the Sun to Earth by a SIP-CESE MHD model with a six-component grid. Astrophys J 723(1): 300. https://doi.org/10.1088/0004-637X/723/1/300. [NASA ADS] [CrossRef] [Google Scholar]
- Feng X, Yang L, Xiang C, Jiang C, Ma X, Wu ST, Zhong D, Zhou Y. 2012. Validation of the 3D AMR SIP-CESE solar wind model for four Carrington rotations. Sol Phys 279(1): 207–229. https://doi.org/10.1007/s11207-012-9969-9. [CrossRef] [Google Scholar]
- Folini D. 2018. Climate, weather, space weather: Model development in an operational context. J Space Weather Space Clim 8: A32. https://doi.org/10.1051/swsc/2018021. [CrossRef] [Google Scholar]
- Freret L, Groth CPT. 2015. Anisotropic non-uniform block-based adaptive mesh refinement for three-dimensional inviscid and viscous flows. In: 22nd AIAA Computational Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics, AIAA 2015-2613. https://doi.org/10.2514/6.2015-2613. [Google Scholar]
- Freret L, Ivan L, De Sterck H, Groth CPT. 2019. High-order finite-volume method with block-based AMR for magnetohydrodynamics flows. J Sci Comput 79(1): 176–208. https://doi.org/10.1007/s10915-018-0844-1. [CrossRef] [Google Scholar]
- Gao X, Groth CPT. 2010. A parallel solution-adaptive method for three-dimensional turbulent non-premixed combusting flows. J Comput Phys 229(5): 3250–3275. https://doi.org/10.1016/j.jcp.2010.01.001. [CrossRef] [Google Scholar]
- Gao X, Northrup SA, Groth CPT. 2011. Parallel solution-adaptive method for two-dimensional non-premixed combusting flows. Prog Comput Fluid Dyn 11(2): 76–95. https://doi.org/10.1504/PCFD.2011.038834. [CrossRef] [Google Scholar]
- Godunov SK. 1959. Finite-difference method for numerical computations of discontinuous solutions of the equations of fluid dynamics. Mat Sb 47: 271–306. https://hal.archives-ouvertes.fr/hal-01620642. [Google Scholar]
- Groth CPT, De Zeeuw DL, Gombosi TI, Powell KG. 2000. Global three-dimensional MHD simulation of a space weather event: CME formation, interplanetary propagation, and interaction with the magnetosphere. J Geophys Res 105(A11): 25053–25078. https://doi.org/10.1029/2000JA900093. [NASA ADS] [CrossRef] [Google Scholar]
- Hakamada K, Kojima M, Tokumaru M, Ohmi T, Yokobe A, Fujiki K. 2002. Solar wind speed and expansion rate of the coronal magnetic field in solar maximum and minimum phases. Sol Phys 207(1): 173–185. https://doi.org/10.1023/A:1015511805863. [CrossRef] [Google Scholar]
- Hakamada K, Kojima M, Ohmi T, Tokumaru M, Fujiki K. 2005. Correlation between expansion rate of the coronal magnetic field and solar wind speed in a solar activity cycle. Sol Phys 227(2): 387–399. https://doi.org/10.1007/s11207-005-3304-7. [CrossRef] [Google Scholar]
- Harten A, Lax PD, van Leer B. 1983. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAMRev 25(1): 35–61. https://doi.org/10.1137/1025002. [CrossRef] [MathSciNet] [Google Scholar]
- Hayashi K. 2012. An MHD simulation model of time-dependent co-rotating solar wind. J Geophys Res: Space Phys 117(A8): A08105. https://doi.org/10.1029/2011JA017490. [CrossRef] [Google Scholar]
- Hayashi K, Kojima M, Tokumaru M, Fujiki K. 2003. MHD tomography using interplanetary scintillation measurement. J Geophys Res: Space Phys 108(A3): 1102. https://doi.org/10.1029/2002JA009567. [CrossRef] [Google Scholar]
- Hill F. 2018. The Global Oscillation Network Group facility: An example of research to operations in space weather. Space Weather 16(10): 1488–1497. https://doi.org/10.1029/2018SW002001. [CrossRef] [Google Scholar]
- Hinterreiter J, Magdalenic J, Temmer M, Verbeke C, Jebaraj IC, et al. 2019. Assessing the performance of EUHFORIA modeling the background solar wind. Sol Phys 294(12): 170. https://doi.org/10.1007/s11207-019-1558-8. [CrossRef] [Google Scholar]
- Hosteaux S, Chané E, Decraemer B, Talpeanu D-C, Poedts S. 2018. Ultrahigh-resolution model of a breakout CME embedded in the solar wind. A&A 620: A57. https://doi.org/10.1051/0004-6361/201832976. [Google Scholar]
- Howard T. 2011. Coronal mass ejections, Springer-Verlag, New York. https://doi.org/10.1007/978-1-4419-8789-1. [CrossRef] [Google Scholar]
- Ivan L, De Sterck H, Northrup SA, Groth CPT. 2011. Three-dimensional MHD on cubed-sphere grids: Parallel solution-adaptive simulation framework. In: 20th AIAA Computational Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics, AIAA 2011-3382. https://doi.org/10.2514/6.2011-3382. [Google Scholar]
- Ivan L, De Sterck H, Northrup SA, Groth CPT. 2013. Multi-dimensional finite-volume scheme for hyperbolic conservation laws on three-dimensional solution-adaptive cubed-sphere grids. J Comput Phys 255: 205–227. https://doi.org/10.1016/j.jcp.2013.08.008. [CrossRef] [Google Scholar]
- Ivan L, De Sterck H, Susanto A, Groth CPT. 2015. High-order central ENO finite-volume scheme for hyperbolic conservation laws on three-dimensional cubed-sphere grids. J Comput Phys 282: 157–182. https://doi.org/10.1016/j.jcp.2014.11.002. [CrossRef] [Google Scholar]
- Kageyama A, Sato T. 2004. “Yin-Yang grid”: An overset grid in spherical geometry. Geochem Geophys Geosyst 5(9): Q09005. https://doi.org/10.1029/2004GC000734. [NASA ADS] [CrossRef] [Google Scholar]
- Kataoka R, Ebisuzaki T, Kusano K, Shiota D, Inoue S, Yamamoto TT, Tokumaru M. 2009. Three-dimensional MHD modeling of the solar wind structures associated with 13 December 2006 coronal mass ejection. J Geophys Res: Space Phys 114(A10): A10102. https://doi.org/10.1029/2009JA014167. [Google Scholar]
- Keppens R, Goedbloed JP. 2000. Stellar winds, dead zones, and coronal mass ejections. Astrophys J 530(2): 1036–1048. https://doi.org/10.1086%2F308395. [NASA ADS] [CrossRef] [Google Scholar]
- Keppens R, Meliani Z, van Marle AJ, Delmont P, Vlasis A, van der Holst B. 2012. Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics. J Comput Phys 231(3): 718–744. https://doi.org/10.1016/j.jcp.2011.01.020. [NASA ADS] [CrossRef] [Google Scholar]
- Lam H-L. 2011. From early exploration to space weather forecasts: Canada’s geomagnetic odyssey. Space Weather 9(5): S05004. https://doi.org/10.1029/2011SW000664. [Google Scholar]
- Lang MS, Browne PA, van Leeuwen PJ, Owens M. 2017. Data assimilation in the solar wind: Challenges and first results. Space Weather 15: 1490–1510. https://doi.org/10.1002/2017SW001681. [CrossRef] [Google Scholar]
- Linker JA, Mikic Z, Biesecker DA, Forsyth RJ, Gibson SE, Lazarus AJ, Lecinski A, Riley P, Szabo A, Thompson BJ. 1999. Magnetohydrodynamic modeling of the solar corona during Whole Sun Month. J Geophys Res: Space Phys 104(A5): 9809–9830. https://doi.org/10.1029/1998JA900159. [CrossRef] [Google Scholar]
- Lionello R, Mikić Z, Schnack DD. 1998. Magnetohydrodynamics of solar coronal plasmas in cylindrical geometry. J Comput Phys 140: 172–201. https://doi.org/10.1006/jcph.1998.5841. [CrossRef] [Google Scholar]
- Lionello R, Linker JA, Mikic Z. 2009. Multispectral emission of the Sun during the first Whole Sun Month: Magnetohydrodynamic simulations. Astrophys J 690(1): 902–912. https://doi.org/10.1088/0004-637X/690/1/902. [NASA ADS] [CrossRef] [Google Scholar]
- Lomax H, Pulliam TH, Zingg DW. 2013. Fundamentals of computational fluid dynamics, Springer-Verlag, New York. https://doi.org/10.1007/978-3-662-04654-8. [Google Scholar]
- Mackay DH, Yeates AR. 2012. The Sun’s global photospheric and coronal magnetic fields: Observations and models. Living Rev Sol Phys 9: 6. https://doi.org/10.12942/lrsp-2012-6. [CrossRef] [Google Scholar]
- MacNeice P. 2009. Validation of community models: 2. Development of a baseline using the Wang-Sheeley-Arge model. Space Weather 7(12): S12002. https://doi.org/10.1029/2009SW000489. [Google Scholar]
- MacNeice P, Jian LK, Antiochos SK, Arge CN, Bussy-Virat CD, et al. 2018. Assessing the quality of models of the ambient solar wind. Space Weather 16(11): 1644–1667. https://doi.org/10.1029/2018SW002040. [CrossRef] [Google Scholar]
- Manchester WB, Gombosi TI, Roussev I, De Zeeuw DL, Sokolov IV, Powell KG, Toth G, Opher M. 2004. Three-dimensional MHD simulation of a flux rope driven CME. J Geophys Res: Space Phys 109(A1): A01102. https://doi.org/10.1029/2002JA009672. [NASA ADS] [CrossRef] [Google Scholar]
- Manchester WB, Vourlidas A, Tóth G, Lugaz N, Roussev II, Sokolov IV, Gombosi TI, De Zeeuw DL, Opher M. 2008. Three-dimensional MHD simulation of the 2003 October 28 coronal mass ejection: Comparison with LASCO coronagraph observations. Astrophys J 684(2): 1448–1460. https://doi.org/10.1086/590231. [NASA ADS] [CrossRef] [Google Scholar]
- Matsumoto H, Sato T (Eds.). 1985. Computer simulation of space plasmas, Terra Scientific Publishing, Tokyo/Dordrecht. [CrossRef] [Google Scholar]
- McGregor SL, Hughes WJ, Arge CN, Owens MJ. 2008. Analysis of the magnetic field discontinuity at the potential field source surface and Schatten Current Sheet interface in the Wang-Sheeley-Arge model. J Geophys Res: Space Phys 113(A8): A08112. https://doi.org/10.1029/2007JA012330. [CrossRef] [Google Scholar]
- Merceret FJ, O’Brien TP, Roeder WP, Huddleston LL, Bauman WH III, Jedlovec GJ. 2013. Transitioning research to operations: Transforming the “Valley of Death” into a “Valley of Opportunity”. Space Weather 11(11): 637–640. https://doi.org/10.1002/swe.20099. [CrossRef] [Google Scholar]
- Merkin VG, Lionello R, Lyon JG, Linker J, Török T, Downs C. 2016. Coupling of coronal and heliospheric magnetohydrodynamic models: Solution comparisons and verification. Astrophys J 831(1): 23–36. https://doi.org/10.3847/0004-637X/831/1/23. [CrossRef] [Google Scholar]
- Mulder WA, van Leer B. 1985. Experiments with implicit upwind methods for the Euler equations. J Comput Phys 59: 232–246. https://doi.org/10.1016/0021-9991(85)90144-5. [CrossRef] [Google Scholar]
- Nikolić L. 2017. Modelling the magnetic field of the solar corona with potential-field source-surface and Schatten current sheet models. Geol Surv Canada Open File 8007. https://doi.org/10.4095/300826. [Google Scholar]
- Nikolić L. 2019. On solutions of the PFSS model with GONG synoptic maps for 2006–2018. Space Weather 17(8): 1293–1311. https://doi.org/10.1029/2019SW002205. [CrossRef] [Google Scholar]
- Northrup SA, Groth CPT. 2013. Parallel implicit adaptive mesh refinement scheme for unsteady fully-compressible reactive flows. In: 21st AIAA Computational Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics, AIAA 2013-2433. https://doi.org/10.2514/6.2013-2433. [Google Scholar]
- Odstrcil D. 2003. Modeling 3-D solar wind structure. Adv Space Res 32(4): 497–506. https://doi.org/10.1016/S0273-1177(03)00332-6. [NASA ADS] [CrossRef] [Google Scholar]
- Odstrčil D, Linker JA, Lionello R, Mikić Z, Riley P, Pizzo VJ, Luhmann JG. 2002. Merging of coronal and heliospheric numerical two-dimensional MHD models. J Geophys Res: Space Phys 107(A12): 1493–1–1493–11. https://doi.org/10.1029/2002JA009334. [Google Scholar]
- Odstrcil D, Pizzo VJ, Linker JA, Riley P, Lionello R, Mikic Z. 2004a. Initial coupling of coronal and heliospheric numerical magnetohydrodynamic codes. J Atmos Sol-Terr Phys 66(15): 1311–1320. https://doi.org/10.1016/j.jastp.2004.04.007. [NASA ADS] [CrossRef] [Google Scholar]
- Odstrcil D, Riley P, Zhao XP. 2004b. Numerical simulation of the 12 May 1997 interplanetary CME event. J Geophys Res: Space Phys 109(A2): A02116. https://doi.org/10.1029/2003JA010135. [NASA ADS] [CrossRef] [Google Scholar]
- Odstrcil D, Pizzo VJ, Arge CN, Bissi MM, Hick PP, et al. 2008. Numerical simulations of solar wind disturbances by coupled models. In: Numerical modeling of space plasma flows, Pogorelov NV, Audit E, Zank GP (Eds.), Vol. 385 of Astronomical Society of the Pacific Conference Series, 167 p. [Google Scholar]
- Owens MJ, Spence HE, McGregor S, Hughes WJ, Quinn JM, Arge CN, Riley P, Linker J, Odstrcil D. 2008. Metrics for solar wind prediction models: Comparison of empirical, hybrid, and physics-based schemes with 8 years of L1 observations. Space Weather 6(8): S08001. https://doi.org/10.1029/2007SW000380. [CrossRef] [Google Scholar]
- Parker EN. 1958. Dynamics of the interplanetary gas and magnetic fields. Astrophys J 128(3): 664–676. https://doi.org/10.1086/146579. [NASA ADS] [CrossRef] [Google Scholar]
- Parsons A, Biesecker D, Odstrcil D, Millward G, Hill S, Pizzo V. 2011. Wang-Sheeley-Arge-Enlil cone model transitions to operations. Space Weather 9(3): S03004. https://doi.org/10.1029/2011SW000663. [CrossRef] [Google Scholar]
- Pizzo VJ. 1982. A three-dimensional model of corotating streams in the solar wind: 3. Magnetohydrodynamic streams. J Geophys Res: Space Phys 87(A6): 4374–4394. https://doi.org/10.1029/JA087iA06p04374. [CrossRef] [Google Scholar]
- Pomoell J, Poedts S. 2018. EUHFORIA: European heliospheric forecasting information asset. J Space Weather Space Clim 8: A35. https://doi.org/10.1051/swsc/2018020. [CrossRef] [Google Scholar]
- Porth O, Xia C, Hendrix T, Moschou SP, Keppens R. 2014. MPI-AMRVAC for solar and astrophysics. Astrophys J Suppl Ser 214(1): 4–29. https://doi.org/10.1088/0067-0049/214/1/4. [NASA ADS] [CrossRef] [Google Scholar]
- Porth O, Olivares H, Mizuno Y, Younsi Z, Rezzolla L, Moscibrodzka M, Falcke H, Kramer M. 2017. The black hole accretion code. Comput Astrophys Cosmol 4(1): 1–42. https://doi.org/10.1186/s40668-017-0020-2. [NASA ADS] [CrossRef] [Google Scholar]
- Powell KG. 1997. An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension). In: Upwind and high-resolution schemes. Hussaini MY, van Leer B, Van Rosendale J (Eds.), Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60543-7_23. [Google Scholar]
- Powell KG, Roe PL, Linde TJ, Gombosi TI, De Zeeuw DL. 1999. A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J Comput Phys 154: 284–309. https://doi.org/10.1006/jcph.1999.6299. [NASA ADS] [CrossRef] [Google Scholar]
- Reiss MA, Temmer M, Veronig AM, Nikolic L, Vennerstrom S, Schöngassner F, Hofmeister SJ. 2016. Verification of high-speed solar wind stream forecasts using operational solar wind models. Space Weather 14(7): 495–510. https://doi.org/10.1002/2016SW001390. [CrossRef] [Google Scholar]
- Richardson IG. 2018. Solar wind stream interaction regions throughout the heliosphere. Living Rev Sol Phys 15: 1. https://doi.org/10.1007/s41116-017-0011-z. [CrossRef] [Google Scholar]
- Riley P, Linker JA, Mikic Z. 2001. An empirically-driven global MHD model of the solar corona and inner heliosphere. J Geophys Res: Space Phys 106(A8): 15889–15901. https://doi.org/10.1029/2000JA000121. [NASA ADS] [CrossRef] [Google Scholar]
- Riley P, Linker JA, Mikić Z, Lionello R, Ledvina SA, Luhmann JG. 2006. A comparison between global solar magnetohydrodynamic and potential field source surface model results. Astrophys J 653(2): 1510–1516. https://doi.org/10.1086/508565. [NASA ADS] [CrossRef] [Google Scholar]
- Roussev II, Gombosi TI, Sokolov IV, Velli M, Manchester W, DeZeeuw DL, Liewer P, Toth G, Luhmann J. 2003. A three-dimensional model of the solar wind incorporating solar magnetogram observations. Astrophys J Lett 595(1): L57. https://doi.org/10.1086/378878. [NASA ADS] [CrossRef] [Google Scholar]
- Saad Y, Schultz MH. 1986. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear equations. SIAM J Sci Stat Comput 7(3): 856–869. https://doi.org/10.1137/0907058. [CrossRef] [MathSciNet] [Google Scholar]
- Schatten KH. 1971. Current sheet magnetic model for the solar corona. Cos Electrodyn 2: 232. [Google Scholar]
- Schatten K, Wilcox J, Ness N. 1969. A model of interplanetary and coronal magnetic fields. Sol Phys 6(3): 442–455. https://doi.org/10.1007/BF00146478. [NASA ADS] [CrossRef] [Google Scholar]
- Sheeley NR. 2017. Origin of the Wang-Sheeley-Arge solar wind model. Hist Geo Space Sci 8(1): 21–28. https://doi.org/10.5194/hgss-8-21-2017. [Google Scholar]
- Shiota D, Kataoka R. 2016. Magnetohydrodynamic simulation of interplanetary propagation of multiple coronal mass ejections with internal magnetic flux rope (SUSANOO-CME). Space Weather 14(2): 56–75. https://doi.org/10.1002/2015SW001308. [NASA ADS] [CrossRef] [Google Scholar]
- Shiota D, Kataoka R, Miyoshi Y, Hara T, Tao C, Masunaga K, Futaana Y, Terada N. 2014. Inner heliosphere MHD modeling system applicable to space weather forecasting for the other planets. Space Weather 12(4): 187–204. https://doi.org/10.1002/2013SW000989. [CrossRef] [Google Scholar]
- Steenburgh RA, Biesecker DA, Millward GH. 2014. From predicting solar activity to forecasting space weather: Practical examples of research-to-operations and operations-to-research. Sol Phys 289(2): 675–690. https://doi.org/10.1007/s11207-013-0308-6. [CrossRef] [Google Scholar]
- Susanto A, Ivan L, Sterck HD, Groth CPT. 2013. High-order central ENO finite-volume scheme for ideal MHD. J Comput Phys 250: 141–164. https://doi.org/10.1016/j.jcp.2013.04.040. [NASA ADS] [CrossRef] [Google Scholar]
- Taktakishvili A, Kuznetsova M, MacNeice P, Hesse M, Rastätter L, Pulkkinen A, Chulaki A, Odstrcil D. 2009. Validation of the coronal mass ejection predictions at the Earth orbit estimated by ENLIL heliosphere cone model. Space Weather 7(3): S03004. https://doi.org/10.1029/2008SW000448. [CrossRef] [Google Scholar]
- Taktakishvili A, Pulkkinen A, MacNeice P, Kuznetsova M, Hesse M, Odstrcil D. 2011. Modeling of coronal mass ejections that caused particularly large geomagnetic storms using ENLIL heliosphere cone model. Space Weather 9(6): S06002. https://doi.org/10.1029/2010SW000642. [CrossRef] [Google Scholar]
- Toro EF. 2013. Riemann solvers and numerical methods for fluid dynamics: A practical introduction, Springer-Verlag, New York. https://doi.org/10.1007/978-3-662-03490-3. [Google Scholar]
- Tóth G, De Zeeuw DL, Gombosi TI, Manchester WB, Ridley AJ, Sokolov IV, Roussev II. 2007. Sun-to-thermosphere simulation of the 28–30 October 2003 storm with the Space Weather Modeling Framework. Space Weather 5(6): S06003. https://doi.org/10.1029/2006SW000272. [Google Scholar]
- Tóth G, van der Holst B, Huang Z. 2011. Obtaining potential field solutions with spherical harmonics and finite differences. Astrophys J 732(2): 102. https://doi.org/10.1088/0004-637X/732/2/102. [NASA ADS] [CrossRef] [Google Scholar]
- Tóth G, van der Holst B, Sokolov IV, De Zeeuw DL, Gombosi TI, et al. 2012. Adaptive numerical algorithms in space weather modeling. J Comput Phys 231(3): 870–903. https://doi.org/10.1016/j.jcp.2011.02.006. [NASA ADS] [CrossRef] [Google Scholar]
- Usmanov A. 1993. A global numerical 3-D MHD model of the solar wind. Sol Phys 146(2): 377–396. https://doi.org/10.1007/BF00662021. [CrossRef] [Google Scholar]
- van der Holst B, Sokolov IV, Meng X, Jin M, Manchester WB, Tóth G, Gombosi TI. 2014. Alfvén wave solar model (AWSoM): Coronal heating. Astrophys J 782(2): 81–95. https://doi.org/10.1088/0004-637X/782/2/81. [NASA ADS] [CrossRef] [Google Scholar]
- Verbeke C, Pomoell J, Poedts S. 2019. The evolution of coronal mass ejections in the inner heliosphere: Implementing the spheromak model with EUHFORIA. A&A 627: A111. https://doi.org/10.1051/0004-6361/201834702. [CrossRef] [EDP Sciences] [Google Scholar]
- Vourlidas A, Subramanian P, Dere KP, Howard RA. 2000. Large-angle spectrometric coronagraph measurements of the energetics of coronal mass ejections. Astrophys J 534(1): 456–467. https://doi.org/10.1086%2F308747. [NASA ADS] [CrossRef] [Google Scholar]
- Wang YM, Sheeley NR. 1990. Solar wind speed and coronal flux-tube expansion. Astrophys J 355: 726–732. https://doi.org/10.1086/168805. [NASA ADS] [CrossRef] [Google Scholar]
- Wang Y, Sheeley NR, Phillips JL. 1995. Coronal flux-tube expansion and the polar wind. Adv Space Res 16(9): 365–365. https://doi.org/10.1016/0273-1177(95)00371-K. [CrossRef] [Google Scholar]
- Wang YM, Sheeley NR, Phillips JL, Goldstein BE. 1997. Solar wind stream interactions and the wind speed-expansion factor relationship. Astrophys J 488(1): L51–L54. https://doi.org/10.1086/310918. [CrossRef] [Google Scholar]
- Webb DF, Howard TA. 2012. Coronal mass ejections: Observations. Living Rev Sol Phys 9: 1. https://doi.org/10.12942/lrsp-2012-3. [Google Scholar]
- Williamschen MJ, Groth CPT. 2013. Parallel anisotropic block-based adaptive mesh refinement algorithm for three-dimensional flows. In: 21st AIAA Computational Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics, AIAA 2013-2442. https://doi.org/10.2514/6.2013-2442. [Google Scholar]
- Wold AM, Mays ML, Taktakishvili A, Jian LK, Odstrcil D, MacNeice P. 2018. Verification of real-time WSA-ENLIL+Cone simulations of CME arrival-time at the CCMC from 2010 to 2016. J Space Weather Space Clim 8: A17. https://doi.org/10.1051/swsc/2018005. [CrossRef] [Google Scholar]
- Xia C, Keppens R. 2016. Formation and plasma circulation of solar prominences. Astrophys J 823(1): 22–40. https://doi.org/10.3847/0004-637X/823/1/22. [NASA ADS] [CrossRef] [Google Scholar]
- Xia C, Chen PF, Keppens R. 2012. Simulations of prominence formation in the magnetized solar corona by chromospheric heating. Astrophys J Lett 748(2): L26. https://doi.org/10.1088/2041-8205/748/2/L26. [NASA ADS] [CrossRef] [Google Scholar]
- Xia C, Keppens R, Guo Y. 2013. Three-dimensional prominence-hosting magnetic configurations: Creating a helical magnetic flux rope. Astrophys J 780(2): 130–154. https://doi.org/10.1088/0004-637X/780/2/130. [NASA ADS] [CrossRef] [Google Scholar]
- Xia C, Keppens R, Antolin P, Porth O. 2014. Simulating the in situ condensation process of solar prominences. Astrophys J Lett 792(2): L38. https://doi.org/10.1088/2041-8205/792/2/L38. [NASA ADS] [CrossRef] [Google Scholar]
- Xia C, Teunissen J, El Mellah I, Chané E, Keppens R. 2018. MPI-AMRVAC 2.0 for solar and astrophysical applications. Astrophys J Suppl Ser 234(2): 30–55. https://doi.org/10.3847/1538-4365/aaa6c8. [NASA ADS] [CrossRef] [Google Scholar]
- Xie H, Ofman L, Lawrence G. 2004. Cone model for halo CMEs: Application to space weather forecasting. J Geophys Res: Space Phys 109(A3): A03109. https://doi.org/10.1029/2003JA010226. [Google Scholar]
- Zhao X, Hoeksema J. 1994. A coronal magnetic field with horizontal volume and sheet currents. Sol Phys 151(1): 91–105. https://doi.org/10.1007/BF00654084. [NASA ADS] [CrossRef] [Google Scholar]
- Zhao XP, Plunkett SP, Liu W. 2002. Determination of geometrical and kinematical properties of halo coronal mass ejections using the cone model. J Geophys Res: Space Phys 107(A8): SSH 13–1–SSH 13–9. https://doi.org/10.1029/2001JA009143. [NASA ADS] [CrossRef] [Google Scholar]
- Zhou Y, Xia C, Keppens R, Fang C, Chen PF. 2018. Three-dimensional MHD simulations of solar prominence oscillations in a magnetic flux rope. Astrophys J 856(2): 179–192. https://doi.org/10.3847/1538-4357/aab614. [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.