Issue |
J. Space Weather Space Clim.
Volume 11, 2021
Topical Issue - Space climate: The past and future of solar activity
|
|
---|---|---|
Article Number | 2 | |
Number of page(s) | 25 | |
DOI | https://doi.org/10.1051/swsc/2020071 | |
Published online | 22 January 2021 |
- Charbonneau P. 2010. Dynamo models of the solar cycle. Living Rev Sol Phys 7, 3: 1–91. https://doi.org/10.12942/lrsp-2010-3. [NASA ADS] [CrossRef] [Google Scholar]
- Clette F, Svalgaard L, Vaquero JM, Cliver EW. 2014. Revisiting the Sunspot Number: a 400-year perspective on the solar cycle. Space Sci Rev 186(1-4): 35–103. https://doi.org/10.1007/s11214-014-0074-2. [CrossRef] [Google Scholar]
- Clette F, Lefèvre L. 2016. The new sunspot number: Assembling all corrections. Solar Phys 291: 2629–2651. https://doi.org/10.1007/s11207-016-1014-y. [Google Scholar]
- Clette F, Lefèvre L, Cagnotti M, Cortesi S, Bulling A. 2016. The revised Brussels–Locarno sunspot number (1981–2015). Solar Phys 291: 2733–2761. https://doi.org/10.1007/s11207-016-0875-4. [Google Scholar]
- Covington AE. 1948. Solar radio noise observations at 10.7 cm. Proc Inst Radio Eng 36: 454. [Google Scholar]
- Covington AE. 1952. NRC 10.7-centimeter radio telescope and radiometer. NRC Report ERA-216. National Research Council of Canada. [Google Scholar]
- Dudok de Wit T, Kretzschmar M, Lilensten J, Woods T. 2009. Finding the best proxies for the solar UV irradiance. Geophys Res Lett 36: L10107. https://doi.org/10.1029/2009GL037825. [CrossRef] [Google Scholar]
- Dudok de Wit T, Bruinsma S, Shibasaki K. 2014. Synoptic radio observations as proxies for upper atmosphere modelling. J Space Weather Space Clim 4: A06. https://doi.org/10.1051/swsc/2014003. [CrossRef] [Google Scholar]
- Ermolli I, Shibasaki K, Tlatov A, van Driel-Gesztelyi L. 2014. Solar Cycle Indices from the Photosphere to the Corona: Measurements and Underlying Physics. Space Sci Rev 186(1-4): 105–135. https://doi.org/10.1007/s11214-014-0089-8. [NASA ADS] [CrossRef] [Google Scholar]
- Hathaway DH. 2010. The solar cycle. Living Rev Sol Phys 7, 1: 1–65. https://doi.org/10.12942/lrsp-2010-1. [NASA ADS] [CrossRef] [Google Scholar]
- Hathaway DH, Wilson RM, Reichmann EJ. 2002. Group sunspot numbers: sunspot cycle characteristics. Solar Phys 211: 357–370. https://doi.org/10.1023/A:1022425402664. [NASA ADS] [CrossRef] [Google Scholar]
- Holland RL, Vaughn WW. 1984. Lagrangian least-square prediction of solar flux (F10.7). J Geophys Res 89: 11. [NASA ADS] [CrossRef] [Google Scholar]
- Howe R, Clette F. 2015. Thomas Cragg proves to be a good observer. J Am Assoc Var Star Obs 43(2): 257. [Google Scholar]
- Johnson RW. 2011. Power law relating 10.7cm flux to sunspot number. Astrophys Space Sci 332(1): 73–79. https://doi.org/10.1007/s10509-010-0500-1. [CrossRef] [Google Scholar]
- Kopecky M. 1982. Why the total solar radio flux at a wavelength of 10-cm cannot fully replace the wolf relative Sunspot Number. In: Compendium in astronomy, a volume dedicated to professor John Xanthakis on the occasion of completing twenty-five years of scientific activities as fellow of the National Academy of Athens. Mariolopoulos EG, Theocaris PS, Mavridis LN, (Eds.), D. Reidel Publishing Company, Dordrecht. pp. 111–115. [Google Scholar]
- Kuklin GV. 1984. On the relationship of wolf numbers and the solar radio emission flux at 2800-Mhz. Solnechnye Dannye Byul Glav Astr Obs 1: 87. [Google Scholar]
- Kuklin GV. 1986. F10.7 – Sunspot number comparison. In: Monograph by The statistics of sunspot activity (Statistika pjatnoobrazovatel’noj dejatelnosti solntsa). Vitinsky YI, Kopecky M, Kuklin GV, (Eds.), Nauka, Moscow (in Russian). [Google Scholar]
- Nicolet M, Bossy L. 1985. Solar radio fluxes as indices of solar activity. Planet Space Sci 33(5): 507–555. https://doi.org/10.1016/0032-0633(85)90096-0. [CrossRef] [Google Scholar]
- Pevtsov AA, Bertello L, Marble AR. 2014. The sun-as-a-star solar spectrum. Astron Nachrichten 335(1): 21. https://doi.org/10.1002/asna.201312012. [CrossRef] [Google Scholar]
- Schonfeld SJ, White SM, Henney CJ, Arge CN, McAteer RTJ. 2015. Coronal sources of the solar F10.7 radio flux. Astrophys J 808: 29. https://doi.org/10.1088/0004-637X/808/1/29. [NASA ADS] [CrossRef] [Google Scholar]
- Shimojo M, Yokoyama T, Asai A, Nakajima H, Shibasaki K. 2006. One solar-cycle observations of prominence activities using the Nobeyama Radioheliograph 1992–2004. Publ Astron Soc Japan 58/1(25 F): 85–92. https://doi.org/10.1093/pasj/58.1.85. [CrossRef] [Google Scholar]
- Stenflo JO. 2012. Basl magnetic flux and the local solar dynamo. A&A 547: A93. https://doi.org/10.1051/0004-6361/201219833. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Svalgaard L. 2016. Reconstruction of solar extreme ultraviolet flux 1740–2015. Solar Phys 291: 2981–3010. https://doi.org/10.1007/s11207-016-0921-2. [Google Scholar]
- Tapping KF. 1987. Recent solar radio astronomy at centimeter wavelengths: the temporal variability of the 10.7-cm flux. J Geophys Res 92: 829–838. https://doi.org/10.1029/JD092iD01p00829. [NASA ADS] [CrossRef] [Google Scholar]
- Tapping K. 2013. The 10.7 cm solar radio flux (F10.7). Space Weather 11: 394–406. https://doi.org/10.1002/swe.20064. [NASA ADS] [CrossRef] [Google Scholar]
- Tapping KF, Charrois DP. 1994. Limits to the Accuracy of the 10.7-Centimeter Flux. Solar Phys 150(1-2): 305–315. https://doi.org/10.1007/BF00712892. [NASA ADS] [CrossRef] [Google Scholar]
- Tapping KF, Detracey B. 1990. The origin of the 10.7-cm flux. Solar Phys 127(2): 321–332. https://doi.org/10.1007/BF00152171. [NASA ADS] [CrossRef] [Google Scholar]
- Tapping K, Morgan C. 2017. Changing relationships between Sunspot Number, total sunspot area, and F10.7 in cycle 23 and 24. Solar Phys 292: 73–86. https://doi.org/10.1007/s11207-017-1111-6. [Google Scholar]
- Tapping KF, Morton DC. 2013. The Next generation of canadian solar flux monitor. J Phys Coner Series 440: 1–5. https://doi.org/10.1088/1742-6596/440/1/012039. [Google Scholar]
- Tapping KF, Valdés JJ. 2011. Did the Sun change its behaviour during the decline of cycle 23 and into cycle 24 ? Solar Phys 272: 337–350. https://doi.org/10.1007/s11207-011-9827-1. [CrossRef] [Google Scholar]
- Tapping KF, Zwaan C. 2001. Sources of the slowly-varying component of solar microwave emission and their relationship with their host active regions. Solar Phys 199(2): 317–344. https://doi.org/10.1023/A:101034282303. [CrossRef] [Google Scholar]
- Thompson R. 2010. The sun and solar activity – the ten centimetre solar radio flux. IPS – Radio and Space Services, Bureau of Meteorology, Australia. http://www.ips.gov.au/Educational/2/2/5. [Google Scholar]
- Tiwari BR, Kumar M. 2018. The solar flux and sunspot number; A long-trend analysis. Internat Ann Sci 5(1): 47–51. https://doi.org/10.21467/ias.5.1.47-51. [CrossRef] [Google Scholar]
- Vitinsky YI. 1982. A correlation between various indices of solar activity and solar cycles. In: Compendium in astronomy, a volume dedicated to professor John Xanthakis on the occasion of completing twenty-five years of scientific activities as fellow of the National Academy of Athens. Mariolopoulos EG, Theocaris PS, Mavridis LN, (Eds.), D. Reidel Publishing Company, Dordrecht. pp. 139–148. [Google Scholar]
- Vitinsky YI, Petrova NN. 1981. A comparison of variations in the indices of sunspots and solar radio emission in the 19th and 20th solar-cycles. Solnechnye Dannye Byul Glav Astr Obs 9: 102. [Google Scholar]
- Wolf R. 1856. Mitteilungen über die Sonnenflecken I. Astron Mitteil Eidgn Sterw Zürich 1: 3–13. [Google Scholar]
- Xanthakis J, Poulakos C. 1984. Long and short term variation of the 10.7cm solar flux. The photospheric granules and the Zürich numbers. Astrophys Space Sci. 111: 179–188. https://doi.org/0004-640X/85.15. [CrossRef] [Google Scholar]
- Yaya P, Hecker L, Dudok de Wit T, Le Fèvre C, Bruinsma S. 2017. Solar radio proxies for improved satellite orbit prediction. J Space Weather Space Clim 7: A35. https://doi.org/10.1051/swsc/2017032. [CrossRef] [Google Scholar]
- Zhao J, Han Y-B. 2008. Historical dataset reconstruction and a prediction method of solar 10.7cm radio flux. Chinese. J Astron Astrophys 8(4): 472–476. http://stacks.iop.org/1009-9271/8/472. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.