Open Access
Issue |
J. Space Weather Space Clim.
Volume 11, 2021
|
|
---|---|---|
Article Number | 3 | |
Number of page(s) | 12 | |
Section | Agora | |
DOI | https://doi.org/10.1051/swsc/2020081 | |
Published online | 22 January 2021 |
- Balogh A, Hudson HS, Petrovay K, von Steiger R. 2014. Introduction to the solar activity cycle: Overview of causes and consequences. Space Sci Rev 186(1–4): 1–15. https://doi.org/10.1007/s11214-014-0125-8. [NASA ADS] [CrossRef] [Google Scholar]
- Charbonneau P. 2020. Dynamo models of the solar cycle. Living Rev Sol Phys 17: 4. https://doi.org/10.1007/s41116-020-00025-6. [CrossRef] [Google Scholar]
- Chen AQ, Wang JX, Li JW, Feynman J, Zhang J. 2011. Statistical properties of superactive regions during solar cycles 19–23. A&A 534: A47. https://doi.org/10.1051/0004-6361/201116790. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Clette F, Svalgaard L, Vaquero JM, Cliver EW. 2014. Revisiting the sunspot number. A 400-year perspective on the solar cycle. Space Sci Rev 186(1–4): 35–103. https://doi.org/10.1007/s11214-014-0074-2. [CrossRef] [Google Scholar]
- Erofeev DV. 2001. Latitudinal distribution of polar faculae. Solar Phys 203(1): 9–25. https://doi.org/10.1023/A:1012741904366. [NASA ADS] [CrossRef] [Google Scholar]
- Georgieva K. 2011. Why the sunspot cycle is double peaked. Int. Sch. Res. Notices 2011: 437838. https://doi.org/10.5402/2011/437838. [Google Scholar]
- Hathaway DH, Wilson RM, Reichmann EJ. 1994. The shape of the sunspot cycle. Solar Phys 151(1): 177–190. https://doi.org/10.1007/BF00654090. [NASA ADS] [CrossRef] [Google Scholar]
- Hirayama T, Moriyama F. 1979. Center to limb variation of the intensity of the photospheric faculae. Solar Phys 63: 251–255. https://doi.org/10.1007/BF00174531. [CrossRef] [Google Scholar]
- Hoeksema JT. 1995. The large-scale structure of the heliospheric current sheet during the ULYSSES epoch. Space Sci Rev 72(1–2): 137–148. https://doi.org/10.1007/BF00768770. [NASA ADS] [CrossRef] [Google Scholar]
- Janardhan P, Fujiki K, Ingale M, Bisoi SK, Rout D. 2018. Solar cycle 24: An unusual polar field reversal. A&A 618: A148. https://doi.org/10.1051/0004-6361/201832981. [CrossRef] [EDP Sciences] [Google Scholar]
- Jenkins JL. 2009. The sun and how to observe it. Astronomers’ Observing Guides. Springer Science+Business Media, LLC. ISBN 978-0-387-09497-7. https://doi.org/10.1007/978-0-387-09498-4. [CrossRef] [Google Scholar]
- Karak BB, Mandal S, Banerjee D. 2018. Double peaks of the solar cycle: an explanation from a dynamo model. Astrophys J 866(1): 17. https://doi.org/10.3847/1538-4357/aada0d. [NASA ADS] [CrossRef] [Google Scholar]
- Kiepenheuer KO. 1964. Solar Site Testing. In: Le choix des sites d’observatoires astronomiques (site testing) [IAU symposium no. 19] tenu a Rome (Italie) du 1er au 6 octobre 1962 avec le concours financier du Consiglio Nazionale delle richerche, Rosch J, (Ed.) International Astronomical Union. Symposium no. 19, Gauthier-Villars, Paris, 193 p. http://adsabs.harvard.edu/abs/1964IAUS...19..193K. [Google Scholar]
- Li K, Irie M, Wang J, Xiong S, Yun H, Liang H, Zhan L, Zhao H. 2002. Activity cycle of polar faculae. Publ Astron Soc Jpn 54(5): 787–792. https://doi.org/10.1093/pasj/54.5.787. [CrossRef] [Google Scholar]
- Meeus J. 1958. Une formule d’adoucissement pour l’activité solaire. Ciel et Terre 74: 445. http://adsabs.harvard.edu/abs/1958C%26T..74.445M. [Google Scholar]
- Makarov VI, Makarova VV. 1996. Polar faculae and sunspot cycles. Solar Phys 163(2): 267–289. https://doi.org/10.1007/BF00148001. [NASA ADS] [CrossRef] [Google Scholar]
- Müller D, Nicula B, Felix S, Verstringe F, Bourgoignie B, Csillaghy A. 2017. JHelioviewer. Time-dependent 3D visualisation of solar and heliospheric data. A&A 606: A10. https://doi.org/10.1051/0004-6361/201730893. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Muñoz-Jaramillo A, Sheeley NR, Zhang J, DeLuca EE. 2012. Calibrating 100 years of polar faculae measurements: Implications for the evolution of the heliospheric magnetic field. Astrophys J 753(2): 146. https://doi.org/10.1088/0004-637X/753/2/146. [CrossRef] [Google Scholar]
- Muñoz-Jaramillo A, Dasi-Espuig M, Balmaceda LA, DeLuca EE. 2013. Solar cycle propagation, memory, and prediction: Insights from a century of magnetic proxies. Astrophys J Lett 767(2): L25. https://doi.org/10.1088/2041-8205/767/2/L25. [NASA ADS] [CrossRef] [Google Scholar]
- Norton AA, Gallagher JC. 2010. Solar-cycle characteristics examined in separate hemispheres: Phase, Gnevyshev gap, and length of minimum. Solar Phys 261: 193–207. https://doi.org/10.1007/s11207-009-9479-6. [CrossRef] [Google Scholar]
- Pesnell WD. 2016. Predictions of solar cycle 24: How are we doing? Space Weather 14(1): 10–21. https://doi.org/10.1002/2015SW001304. [NASA ADS] [CrossRef] [Google Scholar]
- Petrovay K. 2010. Solar cycle prediction. Living Rev Sol Phys 7(1): 6. https://doi.org/10.12942/lrsp-2010-6. [CrossRef] [Google Scholar]
- Petrovay K. 2020. Solar cycle prediction. Living Rev Sol Phys 17(1): 2. https://doi.org/10.1007/s41116-020-0022-z. [CrossRef] [Google Scholar]
- Poppe BB. 2000. New scales help public, technicians understand space weather. Eos Trans AGU 81(29): 322–328. https://doi.org/10.1029/00EO00247. [CrossRef] [Google Scholar]
- Saito K, Tanaka Y. 1957. Polar Faculae of the Sun. Publ Astron Soc Jpn 9: 106. http://adsabs.harvard.edu/abs/1957PASJ..9.106S. [Google Scholar]
- Schatten KH, Scherrer PH, Svalgaard L, Wilcox JM. 1978. Using dynamo theory to predict the sunspot number during solar cycle 21. Geophys Res Lett 5: 411–414. https://doi.org/10.1029/GL005i005p00411. [Google Scholar]
- Schatten KH. 2005. Fair space weather for solar cycle 24. Geophys Res Lett 32(21): L21106. https://doi.org/10.1029/2005GL024363. [CrossRef] [Google Scholar]
- Scherrer PH, Bogart RS, Bush RI, Hoeksema JT, Kosovichev AG, Schou J, et al. 1995. The solar oscillations investigation – Michelson doppler imager. Solar Phys 162(1–2): 129–188. https://doi.org/10.1007/BF00733429. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Schou J, Scherrer PH, Bush RI, Wachter R, Couvidat S, Rabello-Soares MC, et al. 2012. Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO). Solar Phys 275(1–2): 229–259. https://doi.org/10.1007/s11207-011-9842-2. [CrossRef] [Google Scholar]
- Sheeley NR Jr. 1964. Polar faculae during the sunspot cycle. Astrophys J 140: 731. https://doi.org/10.1086/147966. [NASA ADS] [CrossRef] [Google Scholar]
- Sheeley NR Jr. 1966. Measurements of solar magnetic fields. Astrophys J 144: 723. https://doi.org/10.1086/148651. [NASA ADS] [CrossRef] [Google Scholar]
- Sheeley NR Jr. 1976. Polar faculae during the interval 1906–1975. J Geophys Res 81(19): 3462. https://doi.org/10.1029/JA081i019p03462. [CrossRef] [Google Scholar]
- Sheeley NR Jr. 1991. Polar faculae – 1906–1990. Astrophys J, Part 1 (ISSN 0004-637X) 374: 386–389. https://doi.org/10.1086/170129. [Google Scholar]
- Sheeley NR Jr. 2008. A century of polar faculae variations. Astrophys J 680(2): 1553–1559. https://doi.org/10.1086/588251. [CrossRef] [Google Scholar]
- Svalgaard L, Duvall TL Jr, Scherrer PH. 1978. The strength of the sun’s polar fields. Solar Phys 58: 225–239. https://doi.org/10.1007/BF00157268. [NASA ADS] [CrossRef] [Google Scholar]
- Svalgaard L, Cliver EW, Kamide Y. 2005. Sunspot cycle 24: Smallest cycle in 100 years? Geophys Res Lett 32(1): L01104. https://doi.org/10.1029/2004GL021664. [Google Scholar]
- Svanda M, Brun AS, Roudier T, Jouve L. 2016. Polar cap magnetic field reversals during solar grand minima: could pores play a role? A&A 586: A123. https://doi.org/10.1051/0004-6361/201527314. [CrossRef] [EDP Sciences] [Google Scholar]
- Tlatov AG. 2009. The minimum activity epoch as a precursor of the solar activity. Solar Phys 260(2): 465–477. https://doi.org/10.1007/s11207-009-9451-5. [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.