Open Access
Issue |
J. Space Weather Space Clim.
Volume 11, 2021
Topical Issue - Space Weather research in the Digital Age and across the full data lifecycle
|
|
---|---|---|
Article Number | 39 | |
Number of page(s) | 37 | |
Section | Agora | |
DOI | https://doi.org/10.1051/swsc/2021023 | |
Published online | 22 July 2021 |
- Abramenko VI. 2005. Multifractal analysis of solar magnetograms. Sol Phys 228(1–2): 29–42. https://doi.org/10.1007/s11207-005-3525-9. [Google Scholar]
- Abramenko VI, Yurchyshyn VB, Wang H, Spirock TJ, Goode PR. 2003. Signature of an Avalanche in solar flares as measured by photospheric magnetic fields. Astrophys J 597(2): 1135–1144. https://doi.org/10.1086/378492. [Google Scholar]
- Ahmadzadeh A, Aydin B, Georgoulis MK, Kempton DJ, Mahajan SS, Angryk RA. 2021. How to train your flare prediction model: revisiting robust sampling of rare events. arXiv e-prints arXiv:2103.07542. [Google Scholar]
- Ahmed O, Qahwaji R, Colak T, Dudok De Wit T, Ipson S. 2010. A new technique for the calculation and 3D visualisation of magnetic complexities on solar satellite images. Vis Comp 26: 385–395. https://doi.org/10.1007/s00371-010-0418-1. [Google Scholar]
- Ahmed OW, Qahwaji R, Colak T, Higgins PA, Gallagher PT, Bloomfield DS. 2013. Solar flare prediction using advanced feature extraction, machine learning, and feature selection. Sol Phys 283: 157–175. https://doi.org/10.1007/s11207-011-9896-1. [Google Scholar]
- Al-Ghraibah A, Boucheron LE, McAteer RTJ. 2015. An automated classification approach to ranking photospheric proxies of magnetic energy build-up. 579: A64. https://doi.org/10.1051/0004-6361/201525978. [Google Scholar]
- Albeverio S, Jentsch V, Kantz H (Eds). 2006. Extreme events in nature and society, Springer, Berlin Heidelberg. https://doi.org/10.1007/3-540-28611-X. [Google Scholar]
- Anastasiadis A, Papaioannou A, Sandberg I, Georgoulis M, Tziotziou K, Kouloumvakos A, Jiggens P. 2017. Predicting flares and solar energetic particle events: The FORSPEF tool. Sol Phys 292: 134. https://doi.org/10.1007/s11207-017-1163-7. [Google Scholar]
- Anderberg MR. 2014. Cluster analysis for applications: Probability and mathematical statistics: A series of monographs and textbooks, Vol. 19, Academic Press, London. ISBN 978-0120576500. [Google Scholar]
- Angryk RA, Martens PC, Aydin B, Kempton D, Mahajan SS, et al. 2020. Multivariate time series dataset for space weather data analytics. Nat. Sci. Data 7(1): 227. https://doi.org/10.1038/s41597-020-0548-x. [Google Scholar]
- Archontis V, Török T. 2008. Eruption of magnetic flux ropes during flux emergence. A&A 492(2): L35–L38. https://doi.org/10.1051/0004-6361:200811131. [CrossRef] [EDP Sciences] [Google Scholar]
- Aschwanden MJ, Crosby NB, Dimitropoulou M, Georgoulis MK, Hergarten S, et al. 2016. 25 years of self-organized criticality: Solar and Astrophysics. Space Sci Rev 198(1–4): 47–166. https://doi.org/10.1007/s11214-014-0054-6. [Google Scholar]
- Bak P. 1996. How nature works: The science of self-organized criticality. Springer, New York. ISBN 978-0387987385. [Google Scholar]
- Bak P, Tang C, Wiesenfeld K. 1987. Self-organized criticality: An explanation of the 1/f noise. Phys Rev Lett 59(4): 381–384. https://doi.org/10.1103/PhysRevLett.59.381. [Google Scholar]
- Bak P, Tang C, Wiesenfeld K. 1988. Self-organized criticality. Phys Rev A 38(1): 364–374. https://doi.org/10.1103/PhysRevA.38.364. [Google Scholar]
- Baker DN, Li X, Pulkkinen A, Ngwira CM, Mays ML, Galvin AB, Simunac KDC. 2013. A major solar eruptive event in July 2012: Defining extreme space weather scenarios. Space Weather 11: 585–591. https://doi.org/10.1002/swe.20097. [NASA ADS] [CrossRef] [Google Scholar]
- Barnes G. 2007. On the relationship between coronal magnetic null points and solar eruptive events. Astrophys J Lett 670(1): L53–L56. https://doi.org/10.1086/524107. [Google Scholar]
- Barnes G, Leka KD. 2006. Photospheric magnetic field properties of flaring versus flare-quiet active regions. III. Magnetic charge topology models. Astrophys J 646(2): 1303–1318. https://doi.org/10.1086/504960. [NASA ADS] [CrossRef] [Google Scholar]
- Barnes G, Leka KD. 2008. Evaluating the performance of solar flare forecasting methods. Astrophys J Lett 688: L107. https://doi.org/10.1086/595550. [Google Scholar]
- Barnes G, Leka KD, Schrijver CJ, Colak T, Qahwaji R, et al. 2016. A comparison of flare forecasting methods. I. Results from the “All-Clear” workshop. Astrophys J 829: 89. https://doi.org/10.3847/0004-637X/829/2/89. [Google Scholar]
- Barnes G, Schanche N, Leka KD, Aggarwal A, Reeves K. 2017. A comparison of classifiers for solar energetic events. In: Astroinformatics, Brescia M, Djorgovski SG, Feigelson ED, Longo G, Cavuoti S (Eds.), Cambridge University Press, Cambridge, Vol. 325, pp. 201–204. https://doi.org/10.1017/S1743921316012758. [Google Scholar]
- Benvenuto F, Piana M, Campi C, Massone AM. 2018. A hybrid supervised/unsupervised machine learning approach to solar flare prediction. Astrophys J 853(1): 90. https://doi.org/10.3847/1538-4357/aaa23c. [CrossRef] [Google Scholar]
- Benz AO. 2008. Flare Observations. Living Rev Sol Phys 5(1): 1. https://doi.org/10.12942/lrsp-2008-1. [Google Scholar]
- Berger MA. 2003. Topological quantities in magnetohydrodynamics. Adv Nonlinear Dyn Ser Fluid Mech Astrophys Geophys 20030424: 345–374. https://doi.org/10.1201/9780203493137.ch10. [Google Scholar]
- Berger MA, Field GB. 1984. The topological properties of magnetic helicity. J Fluid Mech 147: 133–148. https://doi.org/10.1017/S0022112084002019. [Google Scholar]
- Bezdek JC. 1981. Pattern recognition with fuzzy objective function algorithms. Springer Science & Business Media, Plenum Press, New York. ISBN 978-1-4757-0450-1. [Google Scholar]
- Bloomfield DS, Higgins PA, McAteer RTJ, Gallagher PT. 2012. Toward reliable benchmarking of solar flare forecasting methods. Astrophys J Lett 747: L41. https://doi.org/10.1088/2041-8205/747/2/L41. [Google Scholar]
- Bobra MG, Couvidat S. 2015. Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. Astrophys J 798(2): 135. https://doi.org/10.1088/0004-637X/798/2/135. [Google Scholar]
- Bobra MG, Sun X, Hoeksema JT, Turmon M, Liu Y, Hayashi K, Barnes G, Leka KD. 2014. The helioseismic and magnetic imager (HMI) vector magnetic field pipeline: SHARPs – Space-Weather HMI Active Region Patches. Sol Phys 289: 3549–3578. https://doi.org/10.1007/s11207-014-0529-3. [Google Scholar]
- Breiman L. 2001. Random forests. Mach Learn 45(1): 5–32. https://doi.org/10.1023/A:1010933404324. [Google Scholar]
- Broecker J. 2012. Probability forecasts, chap. 7, John Wiley & Sons, Oxford, pp. 119–139. ISBN: 9781119960003. https://doi.org/10.1002/9781119960003.ch7. [Google Scholar]
- Campi C, Benvenuto F, Massone AM, Bloomfield DS, Georgoulis MK, Piana M. 2019. Feature ranking of active region source properties in solar flare forecasting and the uncompromised stochasticity of flare occurrence. Astrophys J 883(2): 150. https://doi.org/10.3847/1538-4357/ab3c26. [CrossRef] [Google Scholar]
- Camporeale E. 2019. The challenge of machine learning in space weather: Nowcasting and forecasting. Space Weather 17(8): 1166–1207. https://doi.org/10.1029/2018SW002061. [CrossRef] [Google Scholar]
- Camporeale E, Wing S, Johnson J, Jackman CM, McGranaghan R. 2018. Space weather in the machine learning era: A multidisciplinary approach. Space Weather 16: 2–4. https://doi.org/10.1002/2017SW001775. [CrossRef] [Google Scholar]
- Carrington RC. 1859. Description of a singular appearance seen in the Sun on September 1, 1859. Mon Not R Astron Soc 20: 13–15. https://doi.org/10.1093/mnras/20.1.13. [Google Scholar]
- Cliver EW, Dietrich WF. 2013. The 1859 space weather event revisited: Limits of extreme activity. J Space Weather Space Clim 3(27): A31. https://doi.org/10.1051/swsc/2013053. [Google Scholar]
- Conlon PA, Gallagher PT, McAteer RTJ, Ireland J, Young CA, Kestener P, Hewett RJ, Maguire K. 2008. Multifractal properties of evolving active regions. Sol Phys 248(2): 297–309. https://doi.org/10.1007/s11207-007-9074-7. [Google Scholar]
- Crosby NB, Aschwanden MJ, Dennis BR. 1993. Frequency distributions and correlations of solar X-ray flare parameters. Sol Phys 143(2): 275–299. https://doi.org/10.1007/BF00646488. [Google Scholar]
- Dalmasse K, Aulanier G, Démoulin P, Kliem B, Török T, Pariat E. 2015. The origin of net electric currents in solar active regions. Astrophys J 810(1): 17. https://doi.org/10.1088/0004-637X/810/1/17. [Google Scholar]
- De Vito E, Rosasco L, Caponnetto A, Piana M, Verri A. 2004. Some properties of regularized kernel methods. J Mach Learn Res 5(Oct): 1363–1390. [Google Scholar]
- Deng N, Xu Y, Yang G, Cao W, Liu C, Rimmele TR, Wang H, Denker C. 2006. Multiwavelength study of flow fields in flaring super active region NOAA 10486. Astrophys J 644(2): 1278. https://doi.org/10.1086/503600. [Google Scholar]
- Dietterich TG. 2000. Ensemble methods in machine learning. In: International workshop on multiple classifier systems, Kittler J, Roli F (Eds.), Springer-Verlag Berlin, Heidelberg, pp. 1–15. [Google Scholar]
- Drake JF. 1971. Characteristics of soft solar X-ray bursts. Sol Phys 16: 152–185. https://doi.org/10.1007/BF00154510. [Google Scholar]
- Eastwood JP, Hapgood MA, Biffis E, Benedetti D, Bisi MM, Green L, Bentley RD, Burnett C. 2018. Quantifying the economic value of space weather forecasting for power grids: An exploratory study. Space Weather 16: 2052–2067. https://doi.org/10.1029/2018SW002003. [NASA ADS] [CrossRef] [Google Scholar]
- Efron B. 1982. The Jackknife, the Bootstrap and other resampling plans, Society for Industrial and Applied Mathematics, Philadelphia. https://doi.org/10.1137/1.9781611970319. [Google Scholar]
- Elman JL. 1990. Finding structure in time. Cogn Sci 14(2): 179–211. https://doi.org/10.1207/s15516709cog1402_1. [Google Scholar]
- Elvidge S, Angling MJ. 2018. Using extreme value theory for determining the probability of Carrington-like solar flares. Space Weather 16(4): 417–421. https://doi.org/10.1002/2017SW001727. [CrossRef] [Google Scholar]
- Evgeniou T, Pontil M, Poggio T. 2000. Regularization networks and support vector machines. Adv Comput Math 13(1): 1. https://doi.org/10.1023/A:1018946025316. [Google Scholar]
- Falconer DA, Moore RL, Gary GA. 2002. Correlation of the coronal mass ejection productivity of solar active regions with measures of their global nonpotentiality from vector magnetograms: Baseline results. Astrophys J 569(2): 1016–1025. https://doi.org/10.1086/339161. [Google Scholar]
- Falconer DA, Moore RL, Barghouty AF, Khazanov I. 2012. Prior flaring as a complement to free magnetic energy for forecasting solar eruptions. Astrophys J 757: 32. https://doi.org/10.1088/0004-637X/757/1/32. [CrossRef] [Google Scholar]
- Fletcher L, Dennis BR, Hudson HS, Krucker S, Phillips K, et al. 2011. An observational overview of solar flares. Space Sci Rev 159: 19–106. https://doi.org/10.1007/s11214-010-9701-8. [Google Scholar]
- Florios K, Kontogiannis I, Park S-H, Guerra JA, Benvenuto F, Bloomfield DS, Georgoulis MK. 2018. Forecasting solar flares using magnetogram-based predictors and machine learning. Sol Phys 293(2): 28. https://doi.org/10.1007/s11207-018-1250-4. [Google Scholar]
- Freese S, Reddy AP, Lehnhardt K. 2016. Radiation impacts on human health during spaceflight beyond low earth orbit. REACH 2–4: 1–7. https://doi.org/10.1016/j.reach.2016.11.002. [Google Scholar]
- Gary GA, Moore RL. 2004. Eruption of a multiple-turn helical magnetic flux tube in a large flare: Evidence for external and internal reconnection that fits the breakout model of solar magnetic eruptions. Astrophys J 611(1): 545–556. https://doi.org/10.1086/422132. [Google Scholar]
- Georgoulis MK. 2005. Turbulence in the solar atmosphere: Manifestations and diagnostics via solar image processing. Sol Phys 228(1–2): 5–27. https://doi.org/10.1007/s11207-005-2513-4. [Google Scholar]
- Georgoulis MK. 2008. Magnetic complexity in eruptive solar active regions and associated eruption parameters. Geophys Res Lett 35(6): L06S02. https://doi.org/10.1029/2007GL032040. [Google Scholar]
- Georgoulis MK. 2011. Pre-eruption magnetic configurations in the active-region solar photosphere. In: Physics of Sun and Star Spots, Prasad Choudhary D, Strassmeier KG (Eds.), Vol. 273 of IAU Symposium, Cambridge University Press, Cambridge, pp. 495–498. https://doi.org/10.1017/S1743921311015870. [Google Scholar]
- Georgoulis MK. 2012. On our ability to predict major solar flares. Astrophys Space Sci Proc 30: 93. https://doi.org/10.1007/978-3-642-29417-4_9. [CrossRef] [Google Scholar]
- Georgoulis MK. 2013. Toward an efficient prediction of solar flares: Which parameters, and how? Entropy 15(11): 5022–5052. https://doi.org/10.3390/e15115022. [CrossRef] [Google Scholar]
- Georgoulis MK, Rust DM. 2007. Quantitative forecasting of major solar flares. Astrophys J Lett 661: L109–L112. https://doi.org/10.1086/518718. [Google Scholar]
- Georgoulis MK, Titov VS, Mikić Z. 2012. Non-neutralized electric current patterns in solar active regions: Origin of the shear-generating Lorentz force. Astrophys J 761: 61. https://doi.org/10.1088/0004-637X/761/1/61. [Google Scholar]
- Georgoulis MK, Nindos A, Zhang H. 2019. The source and engine of coronal mass ejections. Philos Trans R Soc Lond Ser A 377(2148): 20180,094. https://doi.org/10.1098/rsta.2018.0094. [Google Scholar]
- Gibson SE, Fan Y. 2006. The partial expulsion of a magnetic flux rope. Astrophys J Lett 637(1): L65–L68. https://doi.org/10.1086/500452. [Google Scholar]
- Gontikakis C, Kontogiannis I, Georgoulis MK, Guennou C, Syntelis P, Park SH, Buchlin E. 2020. Differential emission measure evolution as a precursor of solar flares. arXiv e-prints, arXiv:2011.06433. https://arxiv.org/abs/2011.06433. [Google Scholar]
- Goodfellow I, Bengio Y, Courville A. 2016. Deep learning, The MIT Press, Cambridge, MA, ISBN 0262035618. [Google Scholar]
- Green LM, Török T, Vršnak B, Manchester W, Veronig A. 2018. The origin, early evolution and predictability of solar eruptions. Space Sci Rev 214(1): 46. https://doi.org/10.1007/s11214-017-0462-5. [NASA ADS] [CrossRef] [Google Scholar]
- Guennou C, Auchère F, Soubrié E, Bocchialini K, Parenti S, Barbey N. 2012. On the accuracy of the differential emission measure diagnostics of solar plasmas. Application to SDO/AIA. I. Isothermal plasmas. Astrophys J Suppl Ser 203: 25. https://doi.org/10.1088/0067-0049/203/2/25. [Google Scholar]
- Guennou C, Pariat E, Leake JE, Vilmer N. 2017. Testing predictors of eruptivity using parametric flux emergence simulations. J Space Weather Space Clim 7: A17. https://doi.org/10.1051/swsc/2017015. [Google Scholar]
- Guerra JA, Pulkkinen A, Uritsky VM, Yashiro S. 2015. Spatio-temporal scaling of turbulent photospheric line-of-sight magnetic field in active region NOAA 11158. Sol Phys 290: 335–350. https://doi.org/10.1007/s11207-014-0636-1. [Google Scholar]
- Guerra JA, Park SH, Gallagher PT, Kontogiannis I, Georgoulis MK, Bloomfield DS. 2018. Active region photospheric magnetic properties derived from line-of-sight and radial fields. Sol Phys 293(1): 9. https://doi.org/10.1007/s11207-017-1231-z. [CrossRef] [Google Scholar]
- Haggerty DK, Roelof EC. 2002. Impulsive near-relativistic solar electron events: Delayed injection with respect to solar electromagnetic emission. Astrophys J 579: 841–853. https://doi.org/10.1086/342870. [Google Scholar]
- Hagyard MJ, Smith JB, Teuber D, West EA. 1984. A quantitative study relating observed shear in photospheric magnetic fields to repeated flaring. Sol Phys 91(1): 115–126. https://doi.org/10.1007/BF00213618. [Google Scholar]
- Haynes AL, Parnell CE. 2007. A trilinear method for finding null points in a three-dimensional vector space. Phys Plasma 14(8): 082,107. https://doi.org/10.1063/1.2756751. [Google Scholar]
- Hewett RJ, Gallagher PT, McAteer RTJ, Young CA, Ireland J, Conlon PA, Maguire K. 2008. Multiscale analysis of active region evolution. Sol Phys 248: 311–322. https://doi.org/10.1007/s11207-007-9028-0. [Google Scholar]
- Hock RA. 2012. The role of solar flares in the variability of the extreme ultraviolet solar spectral irradiance. Ph.D. thesis, University of Colorado, Boulder. [Google Scholar]
- Hoeksema JT, Liu Y, Hayashi K, Sun X, Schou J, et al. 2014. The helioseismic and magnetic imager (HMI) vector magnetic field pipeline: Overview and performance. Sol Phys 289(9): 3483–3530. https://doi.org/10.1007/s11207-014-0516-8. [NASA ADS] [CrossRef] [Google Scholar]
- Howard R, Severny A. 1963. Solar magnetic fields and the great flare of July 16, 1959. Astrophys J 137: 1242. https://doi.org/10.1086/147600. [Google Scholar]
- Jolliffe IT, Stephenson DB (Eds). 2012. Forecast verification: A practictioner’s guide in atmospheric science, 2nd edn. John Wiley & Sons, Oxford. https://doi.org/10.1002/9781119960003. [Google Scholar]
- Jordan MI. 1997. Serial order: A parallel distributed processing approach. In: Advances in psychology, Donahoe JW, Packard Dorsel V (Eds.), Vol. 121, Elsevier, Amsterdam, pp. 471–495. https://doi.org/10.1016/S0166-4115(97)80111-2. [Google Scholar]
- Kadanoff LP, Nagel SR, Wu L, Zhou S-M. 1989. Scaling and universality in avalanches. Phys Rev A 39: 6524–6537. https://doi.org/10.1103/PhysRevA.39.6524. [Google Scholar]
- Kontogiannis I, Georgoulis MK, Park S-H, Guerra JA. 2017. Non-neutralized electric currents in solar active regions and flare productivity. Sol Phys 292: 159. https://doi.org/10.1007/s11207-017-1185-1. [Google Scholar]
- Kontogiannis I, Georgoulis MK, Park S-H, Guerra JA. 2018. Testing and improving a set of morphological predictors of flaring activity. Sol Phys 293: 96. https://doi.org/10.1007/s11207-018-1317-2. [CrossRef] [Google Scholar]
- Kontogiannis I, Georgoulis MK, Guerra JA, Park S-H, Bloomfield DS. 2019. Which photospheric characteristics are most relevant to active-region coronal mass ejections? Sol Phys 294(9): 130. https://doi.org/10.1007/s11207-019-1523-6. [CrossRef] [Google Scholar]
- Korsós MB, Erdélyi R. 2016. On the state of a solar active region before flares and CMEs. Astrophys J 823: 153. https://doi.org/10.3847/0004-637X/823/2/153. [CrossRef] [Google Scholar]
- Korsós MB, Baranyi T, Ludmány A. 2014. Pre-flare dynamics of sunspot groups. Astrophys J 789: 107. https://doi.org/10.1088/0004-637X/789/2/107. [CrossRef] [Google Scholar]
- Korsós MB, Ludmány A, Erdélyi R, Baranyi T. 2015. On flare predictability based on sunspot group evolution. Astrophys J Lett 802: L21. https://doi.org/10.1088/2041-8205/802/2/L21. [CrossRef] [Google Scholar]
- Krall KR, Smith JB, Hagyard MJ, West EA, Cummings NP. 1982. Vector magnetic field evolution, energy storage, and associated photospheric velocity shear within a flare-productive active region. Sol Phys 79(1): 59–75. https://doi.org/10.1007/BF00146973. [CrossRef] [Google Scholar]
- Krishnapuram R, Keller JM. 1996. The Possibilistic C-Means Algorithm: Insights and Recommendations. Trans Fuz Syst 4(3): 385–393. https://doi.org/10.1109/91.531779. [CrossRef] [Google Scholar]
- Kusano K, Maeshiro T, Yokoyama T, Sakurai T. 2002. Measurement of magnetic helicity injection and free energy loading into the solar corona. Astrophys J 577(1): 501. https://doi.org/10.1086/342171. [CrossRef] [Google Scholar]
- Kusano K, Bamba Y, Yamamoto TT, Iida Y, Toriumi S, Asai A. 2012. Magnetic field structures triggering solar flares and coronal mass ejections. Astrophys J 760(1): 31. https://doi.org/10.1088/0004-637X/760/1/31. [CrossRef] [Google Scholar]
- Leake JE, Linton MG, Török T. 2013. Simulations of emerging magnetic flux. I. The formation of stable coronal flux ropes. Astrophys J 778(2): 99. https://doi.org/10.1088/0004-637X/778/2/99. [CrossRef] [Google Scholar]
- Leake JE, Linton MG, Antiochos SK. 2014. Simulations of emerging magnetic flux. II. The formation of unstable coronal flux ropes and the initiation of coronal mass ejections. Astrophys J 787(1): 46. https://doi.org/10.1088/0004-637X/787/1/46. [CrossRef] [Google Scholar]
- Lee K, Moon YJ, Lee J-Y, Lee K-S, Na H. 2012. Solar flare occurrence rate and probability in terms of the sunspot classification supplemented with sunspot area and its changes. Sol Phys 281(2): 639–650. https://doi.org/10.1007/s11207-012-0091-9. [CrossRef] [Google Scholar]
- Leka KD, Barnes G. 2003a. Photospheric magnetic field properties of flaring versus flare-quiet active regions. I. Data, general approach, and sample results. Astrophys J 595(2): 1277–1295. https://doi.org/10.1086/377511. [CrossRef] [Google Scholar]
- Leka KD, Barnes G. 2003b. Photospheric magnetic field properties of flaring versus flare-quiet active regions. II. Discriminant analysis. Astrophys J 595: 1296–1306. https://doi.org/10.1086/377512. [CrossRef] [Google Scholar]
- Leka KD, Barnes G. 2007. Photospheric magnetic field properties of flaring versus flare-quiet active regions. IV. A statistically significant sample. Astrophys J 656(2): 1173–1186. https://doi.org/10.1086/510282. [CrossRef] [Google Scholar]
- Leka KD, Barnes G, Wagner E. 2018. The NWRA classification infrastructure: Description and extension to the discriminant analysis flare forecasting system (DAFFS). Journal of Space Weather and Space Climate 8: A25. https://doi.org/10.1051/swsc/2018004. [CrossRef] [EDP Sciences] [Google Scholar]
- Leka KD, Park S-H, Kusano K, Andries J, Barnes G, et al. 2019a. A comparison of flare forecasting methods. II. Benchmarks, metrics, and performance results for operational solar flare forecasting systems. Astrophys J Suppl Ser 243(2): 36. https://doi.org/10.3847/1538-4365/ab2e12. [CrossRef] [Google Scholar]
- Leka KD, Park S-H, Kusano K, Andries J, Barnes G, et al. 2019b. A comparison of flare forecasting methods. III. Systematic behaviors of operational solar flare forecasting systems. Astrophys J 881(2): 101. https://doi.org/10.3847/1538-4357/ab2e11. [CrossRef] [Google Scholar]
- Li R, Cui Y, He H, Wang H. 2008. Application of support vector machine combined with K-nearest neighbors in solar flare and solar proton events forecasting. Adv Space Res 42(9): 1469–1474. https://doi.org/10.1016/j.asr.2007.12.015. [CrossRef] [Google Scholar]
- Li X, Zheng Y, Wang X, Wang L. 2020. Predicting solar flares using a novel deep convolutional neural network. Astrophys J 891(1): 10. https://doi.org/10.3847/1538-4357/ab6d04. [CrossRef] [Google Scholar]
- Liaw A, Wiener M. 2002. Classification and regression by randomForest. In: The Newsletter of the R Project Volume, The R-Foundation CRAN R-Project, 2 p. https://cran.r-project.org. [Google Scholar]
- Linan L, Pariat E, Moraitis K, Valori G, Leake J. 2018. Time variations of the nonpotential and volume-threading magnetic helicities. Astrophys J 865(1): 52. https://doi.org/10.3847/1538-4357/aadae7. [CrossRef] [Google Scholar]
- Liu Y. 2008. Magnetic field overlying solar eruption regions and kink and torus instabilities. Astrophys J Lett 679(2): L151. https://doi.org/10.1086/589282. [CrossRef] [Google Scholar]
- Liu L, Wang Y, Wang J, Shen C, Ye P, Liu R, Chen J, Zhang Q, Wang S. 2016. Why is a flare-rich active region CME-poor? Astrophys J 826(2): 119. https://doi.org/10.3847/0004-637X/826/2/119. [CrossRef] [Google Scholar]
- Longadge R, Dongre S. 2013. Class imbalance problem in data mining review. Int J Comput Sci Netw (IJCSN) 2(1). ISSN 2277-5420. arXiV e-print article: https://arxiv.org/abs/1305.1707. [Google Scholar]
- Lu ET, Hamilton RJ. 1991. Avalanches and the distribution of solar flares. Astrophys J Lett 380: L89. https://doi.org/10.1086/186180. [CrossRef] [Google Scholar]
- Lu ET, Hamilton RJ, McTiernan JM, Bromund KR. 1993. Solar flares and avalanches in driven dissipative systems. Astrophys J 412: 841. https://doi.org/10.1086/172966. [CrossRef] [Google Scholar]
- MacAlester MH, Murtagh W. 2014. Extreme space weather impact: An emergency management perspective. Space Weather 12(8): 530–537. https://doi.org/10.1002/2014SW001095. [CrossRef] [Google Scholar]
- Malandraki OE, Crosby NB. 2018. Solar particle radiation storms forecasting and analysis. In: Vol. 444 of Astrophysics and Space Science Library, Springer International Publishing, Switzerland. https://doi.org/10.1007/978-3-319-60051-2. [CrossRef] [Google Scholar]
- Martens PCH, Attrill GDR, Davey AR, Engell A, Farid S, et al. 2012. Computer vision for the solar dynamics observatory (SDO). Sol Phys 275(1–2): 79–113. https://doi.org/10.1007/s11207-010-9697-y. [CrossRef] [Google Scholar]
- Mason JP, Hoeksema JT. 2010. Testing automated solar flare forecasting with 13 years of michelson doppler imager magnetograms. Astrophys J 723: 634–640. https://doi.org/10.1088/0004-637X/723/1/634. [CrossRef] [Google Scholar]
- Massone A, Studer L, Masulli F. 2006. Possibilistic clustering approach to trackless ring pattern recognition in RICH counters. Int J Approx Reason 41(2): 96–109. Advances in Fuzzy Sets and Rough Sets. http://doi.org/10.1016/j.ijar.2005.06.012. [CrossRef] [Google Scholar]
- Massone AM, Piana M, the FLARECAST Consortium. 2018. Chapter 14 – machine learning for flare forecasting. In: Machine learning techniques for space weather, Camporeale E, Wing S, Johnson JR (Eds.), Elsevier Amsterdam, Oxford, Cambridge MA, pp. 355–364. ISBN 978-0-12-811788-0. https://doi.org/10.1016/B978-0-12-811788-0.00014-7. [CrossRef] [Google Scholar]
- Mays ML, Taktakishvili A, Pulkkinen A, MacNeice PJ, Rastätter L, et al. 2015. Ensemble modeling of CMEs using the WSA-ENLIL + Cone model. Sol Phys 290: 1775–1814. https://doi.org/10.1007/s11207-015-0692-1. [CrossRef] [Google Scholar]
- McAteer RTJ, Aschwanden MJ, Dimitropoulou M, Georgoulis MK, Pruessner G, Morales L, Ireland J, Abramenko V. 2016. 25 years of self-organized criticality: Numerical detection methods. Space Sci Rev 198(1–4): 217–266. https://doi.org/10.1007/s11214-015-0158-7. [CrossRef] [Google Scholar]
- McCloskey AE, Gallagher PT, Bloomfield DS. 2016. Flaring rates and the evolution of sunspot group McIntosh classifications. Sol Phys 291(6): 1711–1738. https://doi.org/10.1007/s11207-016-0933-y. [CrossRef] [Google Scholar]
- McIntosh PS. 1990. The classification of sunspot groups. Sol Phys 125: 251–267. https://doi.org/10.1007/BF00158405. [CrossRef] [Google Scholar]
- Merceret FJ, O’Brien TP, Roeder WP, Huddleston LL, Bauman WH, Jedlovec GJ. 2013. Transitioning research to operations: Transforming the “Valley of Death” into a “Valley of Opportunity”. Space Weather 11(11): 637–640. https://doi.org/10.1002/swe.20099. [CrossRef] [Google Scholar]
- Meyers RA (ed). 2011. Extreme environmental events, Springer, New York. https://doi.org/10.1007/978-1-4419-7695-6. [CrossRef] [Google Scholar]
- Moraitis K, Tziotziou K, Georgoulis MK, Archontis V. 2014. Validation and benchmarking of a practical free magnetic energy and relative magnetic helicity budget calculation in solar magnetic structures. Sol Phys 122: 4453–4480. https://doi.org/10.1007/s11207-014-0590-y. [CrossRef] [Google Scholar]
- Möstl C, Amla K, Hall JR, Liewer PC, De Jong EM, et al. 2014. Connecting speeds, directions and arrival times of 22 coronal mass ejections from the sun to 1 AU. Astrophys J 787: 119. https://doi.org/10.1088/0004-637X/787/2/119. [CrossRef] [Google Scholar]
- Muranushi T, Shibayama T, Muranushi YH, Isobe H, Nemoto S, Komazaki K, Shibata K. 2015. UFCORIN: A fully automated predictor of solar flares in GOES X-ray flux. Space Weather 13(11): 778–796. https://doi.org/10.1002/2015sw001257. [CrossRef] [Google Scholar]
- Murray SA, Bingham S, Sharpe M, Jackson DR. 2017. Flare forecasting at the Met Office Space Weather Operations Centre. Space Weather 15: 577–588. https://doi.org/10.1002/2016SW001579. [CrossRef] [Google Scholar]
- Murray SA, Guerra JA, Zucca P, Park S-H, Carley EP, Gallagher PT, Vilmer N, Bothmer V. 2018. Connecting coronal mass ejections to their solar active region sources: Combining results from the HELCATS and FLARECAST projects. Sol Phys 293: 60. https://doi.org/10.1007/s11207-018-1287-4. [CrossRef] [Google Scholar]
- Nishizuka N, Sugiura K, Kubo Y, Den M, Watari S, Ishii M. 2017. Solar flare prediction model with three machine-learning algorithms using ultraviolet brightening and vector magnetograms. Astrophys J 835(2): 156. https://doi.org/10.3847/1538-4357/835/2/156. [CrossRef] [Google Scholar]
- Nishizuka N, Sugiura K, Kubo Y, Den M, Ishii M. 2018. Deep flare net (DeFN) model for solar flare prediction. Astrophys J 858(2): 113. https://doi.org/10.3847/1538-4357/aab9a7. [CrossRef] [Google Scholar]
- NRC. 2008. Severe space weather events: Understanding societal and economic impacts: A workshop report. The National Academies Press, Washington, DC. ISBN: 978-0-309-12769-1. https://doi.org/10.17226/12507. [Google Scholar]
- Opgenoorth HJ, Wimmer-Schweingruber RF, Belehaki A, Berghmans D, Hapgood M, et al. 2019. Assessment and recommendations for a consolidated European approach to space weather – as part of a global space weather effort. J Space Weather Space Clim 9: A37. https://doi.org/10.1051/swsc/2019033. [CrossRef] [Google Scholar]
- Oughton EJ, Skelton A, Horne RB, Thomson AWP, Gaunt CT. 2017. Quantifying the daily economic impact of extreme space weather due to failure in electricity transmission infrastructure. Space Weather 15: 65–83. https://doi.org/10.1002/2016SW001491. [CrossRef] [Google Scholar]
- Pariat E, Leake JE, Valori G, Linton MG, Zuccarello FP, Dalmasse K. 2017. Relative magnetic helicity as a diagnostic of solar eruptivity. A&A 601: A125. https://doi.org/10.1051/0004-6361/201630043. [CrossRef] [EDP Sciences] [Google Scholar]
- Park S-H, Chae J, Wang H. 2010. Productivity of solar flares and magnetic helicity injection in active regions. Astrophys J 718(1): 43. https://doi.org/10.1088/0004-637X/718/1/43. [CrossRef] [Google Scholar]
- Park S-H, Cho K-S, Bong S-C, Kumar P, Chae J, Liu R, Wang H. 2012. The occurrence and speed of CMEs related to two characteristic evolution patterns of helicity injection in their solar source regions. Astrophys J 750: 48. https://doi.org/10.1088/0004-637X/750/1/48. [CrossRef] [Google Scholar]
- Park S-H, Guerra JA, Gallagher PT, Georgoulis MK, Bloomfield DS. 2018. Photospheric shear flows in solar active regions and their relation to flare occurrence. Sol Phys 293: 114. https://doi.org/10.1007/s11207-018-1336-z. [CrossRef] [Google Scholar]
- Park S-H, Leka KD, Kusano K, Andries J, Barnes G, et al. 2020. A comparison of flare forecasting methods. IV. Evaluating consecutive-day forecasting patterns. Astrophys J 890(2): 124. https://doi.org/10.3847/1538-4357/ab65f0. [CrossRef] [Google Scholar]
- Patsourakos S, Vourlidas A, Török T, Kliem B, Antiochos SK, et al. 2020. Decoding the pre-eruptive magnetic field configurations of coronal mass ejections. Space Sci Rev 216(8): 131. https://doi.org/10.1007/s11214-020-00757-9. [CrossRef] [Google Scholar]
- Pesnell WD, Thompson BJ, Chamberlin PC. 2012. The solar dynamics observatory (SDO). Sol Phys 275(1–2): 3–15. https://doi.org/10.1007/s11207-011-9841-3. [Google Scholar]
- Piana M, Campi C, Benvenuto F, Guastavino S, Massone AM. 2019. Flare forecasting and feature ranking using SDO/HMI data. Nuovo Cimento C 42(30): 4. https://doi.org/10.1393/ncc/i2019-19030-1. [Google Scholar]
- Pontin DI, Priest ER, Galsgaard K. 2013. On the nature of reconnection at a solar coronal null point above a separatrix dome. Astrophys J 774(2): 154. https://doi.org/10.1088/0004-637X/774/2/154. [CrossRef] [Google Scholar]
- Qahwaji R, Colak T. 2007. Automatic short-term solar flare prediction using machine learning and sunspot associations. Sol Phys 241(1): 195–211. https://doi.org/10.1007/s11207-006-0272-5. [CrossRef] [Google Scholar]
- Qahwaji R, Colak T, Al-Omari M, Ipson S. 2008. Automated prediction of CMEs using machine learning of CME – flare associations. Sol Phys 248: 471–483. https://doi.org/10.1007/s11207-007-9108-1. [CrossRef] [Google Scholar]
- Reames DV (ed). 2017. Solar energetic particles. In: Vol. 932 of Lecture Notes in Physics, Berlin Springer Verlag. https://doi.org/10.1007/978-3-319-50871-9. [CrossRef] [Google Scholar]
- Richardson DS. 2012. Economic value and skill, Chap. 9, John Wiley & Sons, Oxford, pp. 167–184. ISBN 9781119960003. https://doi.org/10.1002/9781119960003.ch9. [Google Scholar]
- Riley P, Love JJ. 2017. Extreme geomagnetic storms: Probabilistic forecasts and their uncertainties. Space Weather 15: 53–64. https://doi.org/10.1002/2016SW001470. [CrossRef] [Google Scholar]
- Rosasco L, Vito ED, Caponnetto A, Piana M, Verri A. 2004. Are loss functions all the same? Neural Comput 16(5): 1063–1076. https://doi.org/10.1162/089976604773135104. [CrossRef] [Google Scholar]
- Rosner R, Vaiana GS. 1978. Cosmic flare transients: Constraints upon models for energy storage and release derived from the event frequency distribution. Astrophys J 222: 1104–1108. https://doi.org/10.1086/156227. [CrossRef] [Google Scholar]
- Rudin C. 2019. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Mach Intel 1: 206–215. https://doi.org/10.1038/s42256-019-0048-x. [CrossRef] [Google Scholar]
- Rust DM, Haggerty DK, Georgoulis MK, Sheeley NR, Wang Y-M, DeRosa ML, Schrijver CJ. 2008. On the solar origins of open magnetic fields in the heliosphere. Astrophys J 687: 635–645. https://doi.org/10.1086/592017. [CrossRef] [Google Scholar]
- Scherrer PH, Schou J, Bush RI, Kosovichev AG, Bogart RS, et al. 2012. The helioseismic and magnetic imager (HMI) Investigation for the solar dynamics observatory (SDO). Sol Phys 275: 207–227. https://doi.org/10.1007/s11207-011-9834-2. [NASA ADS] [CrossRef] [Google Scholar]
- Scholkopf B, Smola AJ. 2001. Learning with kernels: Support vector machines, regularization, optimization, and beyond, The MIT Press, Cambridge, MA. ISBN 978-0262536578. [Google Scholar]
- Schou J, Scherrer PH, Bush RI, Wachter R, Couvidat S, et al. 2012. Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO). Sol Phys 275(1–2): 229–259. https://doi.org/10.1007/s11207-011-9842-2. [CrossRef] [Google Scholar]
- Schrijver CJ. 2007. A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. ApJL 655: L117–L120. https://doi.org/10.1086/511857. [CrossRef] [Google Scholar]
- Schrijver CJ. 2009. Driving major solar flares and eruptions: A review. Adv Space Res 43(5): 739–755. https://doi.org/10.1016/j.asr.2008.11.004. [CrossRef] [Google Scholar]
- Schrijver CJ, De Rosa ML, Title AM, Metcalf TR. 2005. The nonpotentiality of active-region coronae and the dynamics of the photospheric magnetic field. Sol Phys 628(1): 501–513. https://doi.org/10.1086/430733. [Google Scholar]
- Schrijver CJ, Kauristie K, Aylward AD, Denardini CM, Gibson SE, et al. 2015. Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS. Adv Space Res 55(12): 2745–2807. https://doi.org/10.1016/j.asr.2015.03.023. [NASA ADS] [CrossRef] [Google Scholar]
- Sharma AS, Bunde A, Dimri VP, Baker DN (Eds). 2012. Extreme events and natural hazards: The complexity perspective. American Geophysical Union, Washington DC. https://doi.org/10.1029/gm196. [CrossRef] [Google Scholar]
- Sharpe MA, Murray SA. 2017. Verification of space weather forecasts issued by the Met Office Space Weather Operations Centre. Space Weather 15(10): 1383–1395. https://doi.org/10.1002/2017SW001683. [CrossRef] [Google Scholar]
- Shu K, Cui L, Wang S, Lee D, Liu H. 2019. DEFEND: explainable fake news detection. Association for Computing Machinery, New York, NY, USA. ISBN 9781450362016. https://doi.org/10.1145/3292500.3330935. [Google Scholar]
- Song H, Tan C, Jing J, Wang H, Yurchyshyn V, Abramenko V. 2009. Statistical assessment of photospheric magnetic features in imminent solar flare predictions. Sol Phys 254(1): 101–125. https://doi.org/10.1007/s11207-008-9288-3. [CrossRef] [Google Scholar]
- Strugarek A, Charbonneau P. 2014. Predictive capabilities of avalanche models for solar flares. Sol Phys 289(11): 4137–4150. https://doi.org/10.1007/s11207-014-0570-2. [CrossRef] [Google Scholar]
- Syntelis P, Gontikakis C, Patsourakos S, Tsinganos K. 2016. The spectroscopic imprint of the pre-eruptive configuration resulting into two major coronal mass ejections. A&A 588: A16. https://doi.org/10.1051/0004-6361/201526829. [CrossRef] [EDP Sciences] [Google Scholar]
- Thompson WT. 2006. Coordinate systems for solar image data. A&A 449(2): 791–803. https://doi.org/10.1051/0004-6361:20054262. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Toriumi S, Wang H. 2019. Flare-productive active regions. Living Rev Sol Phys 16(1): 3. https://doi.org/10.1007/s41116-019-0019-7. [CrossRef] [Google Scholar]
- Török T, Leake JE, Titov VS, Archontis V, Mikić Z, Linton MG, Dalmasse K, Aulanier G, Kliem B. 2014. Distribution of electric currents in solar active regions. Astrophys J Lett 782(1): L10. https://doi.org/10.1088/2041-8205/782/1/L10. [CrossRef] [Google Scholar]
- Ugarte-Urra I, Warren HP, Winebarger AR. 2007. The magnetic topology of coronal mass ejection sources. Astrophys J 662(2): 1293–1301. https://doi.org/10.1086/514814. [CrossRef] [Google Scholar]
- van Ballegooijen AA, Martens PCH. 1989. Formation and eruption of solar prominences. Astrophys J 343: 971. https://doi.org/10.1086/167766. [CrossRef] [Google Scholar]
- Verbeke C, Mays ML, Temmer M, Bingham S, Steenburgh R, et al. 2019. Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events. Space Weather 17(1): 6–26. https://doi.org/10.1029/2018SW002046. [CrossRef] [Google Scholar]
- Vlahos L, Georgoulis M, Kluiving R, Paschos P. 1995. The statistical flare. A&A 299: 897. [Google Scholar]
- Wang S, Liu C, Deng N, Wang H. 2014. Sudden photospheric motion and sunspot rotation associated with the X2.2 Flare on 2011 February 15. Astrophys J Lett 782(2): L31. https://doi.org/10.1088/2041-8205/782/2/L31. [CrossRef] [Google Scholar]
- Welsch BT, Li Y, Schuck PW, Fisher GH. 2009. What is the relationship between photospheric flow fields and solar flares? Astrophys J 705(1): 821–843. https://doi.org/10.1088/0004-637X/705/1/821. [CrossRef] [Google Scholar]
- Woodcock F. 1976. The evaluation of yes/no forecasts for scientific and administrative purposes. Month Weather Rev 104(10): 1209–1214. https://doi.org/10.1175/1520-0493(1976)104<1209:TEOYFF>2.0.CO;2. [CrossRef] [Google Scholar]
- Wu TT, Chen YF, Hastie T, Sobel E, Lange K. 2009. Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics 25(6): 714–721. https://doi.org/10.1093/bioinformatics/btp041. [CrossRef] [Google Scholar]
- Yan XL, Wang JC, Pan GM, Kong DF, Xue ZK, Yang LH, Li QL, Feng XS. 2018. Successive X-class flares and coronal mass ejections driven by shearing motion and sunspot rotation in active region NOAA 12673. Astrophys J 856(1): 79. https://doi.org/10.3847/1538-4357/aab153. [CrossRef] [Google Scholar]
- Yashiro S, Gopalswamy N, Akiyama S, Michalek G, Howard RA. 2005. Visibility of coronal mass ejections as a function of flare location and intensity. J Geophys Res (Space Phys) 110(A12): A12S05. https://doi.org/10.1029/2005JA011151. [CrossRef] [Google Scholar]
- Yu D, Huang X, Wang H, Cui Y. 2009. Short-term solar flare prediction using a sequential supervised learning method. Sol Phys 255(1): 91–105. https://doi.org/10.1007/s11207-009-9318-9. [CrossRef] [Google Scholar]
- Yuan M, Lin Y. 2006. Model selection and estimation in regression with grouped variables. J Roy Stat Soc: Ser B (Stat Methodol) 68(1): 49–67. https://doi.org/10.1111/j.1467-9868.2005.00532.x. [CrossRef] [Google Scholar]
- Zirin H, Liggett MA. 1987. Delta spots and great flares. Sol Phys 113(1–2): 267–283. https://doi.org/10.1007/BF00147707. [CrossRef] [Google Scholar]
- Zirin H, Marquette W. 1991. BEARALERTS: A successful flare prediction system. Sol Phys 131(1): 149–164. https://doi.org/10.1007/bf00151751. [CrossRef] [Google Scholar]
- Zou H, Hastie T. 2005. Regularization and variable selection via the elastic net. J Roy Stat Soc: Ser B (Stat Methodol) 67(2): 301–320. https://doi.org/1369-7412/05/67301. [CrossRef] [Google Scholar]
- Zuccarello FP, Seaton DB, Mierla M, Poedts S, Rachmeler LA, Romano P, Zuccarello F. 2014. Observational evidence of torus instability as trigger mechanism for coronal mass ejections: The 2011 August 4 filament eruption. Astrophys J 785(2): 88. https://doi.org/10.1088/0004-637X/785/2/88. [CrossRef] [Google Scholar]
- Zuccarello FP, Pariat E, Valori G, Linan L. 2018. Threshold of non-potential magnetic helicity ratios at the onset of solar eruptions. Astrophys J 863(1): 41. https://doi.org/10.3847/1538-4357/aacdfc. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.