Open Access
Issue |
J. Space Weather Space Clim.
Volume 11, 2021
Topical Issue - 10 years of JSWSC
|
|
---|---|---|
Article Number | 40 | |
Number of page(s) | 13 | |
Section | Agora | |
DOI | https://doi.org/10.1051/swsc/2021016 | |
Published online | 22 July 2021 |
- Abbot CG. 1950. What causes weather. Leaflet of the Astronomical Society of the Pacific 6(254): 28–35. [Google Scholar]
- Abreu JA, Beer J, Steinhilber F, Christl M, Kubik PW. 2013. 10Be in ice cores and 14C in tree rings: Separation of production and climate effects. Space Sci Rev 176(1–4): 343–349. https://doi.org/10.1007/s11214-011-9864-y. [CrossRef] [Google Scholar]
- Anet JG, Muthers S, Rozanov EV, Raible CC, Stenke A, et al. 2014. Impact of solar versus volcanic activity variations on tropospheric temperatures and precipitation during the Dalton Minimum. Climate of the Past 10(3): 921–938. https://doi.org/10.5194/cp-10-921-2014. [CrossRef] [Google Scholar]
- Anet JG, Rozanov EV, Muthers S, Peter T, Brönnimann S, et al. 2013. Impact of a potential 21st century “grand solar minimum” on surface temperatures and stratospheric ozone. Geophys Res Lett 40(16): 4420–4425. https://doi.org/10.1002/grl.50806. [CrossRef] [Google Scholar]
- Aono Y. 2015. Cherry blossom phenological data since the seventeenth century for Edo (Tokyo), Japan, and their application to estimation of March temperatures. Int J Biometeorology 59: 427–434. https://doi.org/10.1007/s00484-014-0854-0. [CrossRef] [Google Scholar]
- Aono Y, Kazui K. 2008. Phenological data series of cherry tree flowering in Kyoto, Japan, and its application to reconstruction of springtime temperatures since the 9th century. Int J Climatology 28: 905–914. https://doi.org/10.1002/joc.1594. [CrossRef] [Google Scholar]
- Aono Y, Saito S. 2010. Clarifying springtime temperature reconstructions of the medieval period by gap-filling the cherry blossom phenological data series at Kyoto, Japan. Int J Biometeorology 54: 211–219. https://doi.org/10.1007/s00484-009-0272-x. [CrossRef] [Google Scholar]
- Arfeuille F, Rozanov E, Peter T, Fischer AM, Weisenstein D, Brönnimann S. 2010. Modeling the “Year without summer 1816” with the CCM SOCOL. In: EGU General Assembly Conference Abstracts, EGU General Assembly Conference Abstracts 12247. [Google Scholar]
- Aschwanden MJ, Scholkmann F, Béthune W, Schmutz W, Abramenko V, et al. 2018. Order out of randomness: Self-organization processes in astrophysics. Space Sci Rev 214(2): 55. https://doi.org/10.1007/s11214018-0489-2. [CrossRef] [Google Scholar]
- BenMoussa A, Gissot S, Schühle U, Del Zanna G, Auchère F., et al. 2013. On-orbit degradation of solar instruments. Sol Phys 288(1): 389–434. https://doi.org/10.1007/s11207-013-0290-z. [NASA ADS] [CrossRef] [Google Scholar]
- Caballero-Lopez RA, Engelbrecht NE, Richardson JD. 2019. Correlation of long-term cosmicray modulation with solar activity parameters. Astrophys J 883(1): 73. https://doi.org/10.3847/1538-4357/ab3c57. [CrossRef] [Google Scholar]
- Campisano CJ. 2012. Milankovitch cycles, paleoclimatic change, and hominin evolution. Nature Education Knowledge 4(3): 5. [Google Scholar]
- Clette F, Vaquero JM, Cruz Gallego M, Lefèvre L. 2020. Sunspot and group number: Recent advances from historical data. In: IAU General Assembly, pp. 156–159. https://doi.org/10.1017/S174392131900396X. [Google Scholar]
- Dewitte S, Crommelynck D, Mekaoui S, Joukoff A. 2004. Measurement and uncertainty of the longterm total solar irradiance trend. Sol Phys 224: 209–216. https://doi.org/10.1007/s11207-005-5698-7. [Google Scholar]
- Dudok de Wit T, Kopp G, Fröhlich C, Schöll M. 2017. Methodology to create a new total solar irradiance record: Making a composite out of multiple data records. Geophys Res Lett 44: 1196–1203. https://doi.org/10.1002/2016GL071866. [CrossRef] [Google Scholar]
- Dudok de Wit T, Ermolli I, Haberreiter M, Kambezidis H, Lam MM, et al. 2016. Earth’s climate response to a changing Sun. EDP Sciences, France ISBN 978-2-7598-1733-7. https://doi.org/10.1051/978-2-75981733-7. [Google Scholar]
- Eddy JA. 1976. The maunder minimum. Science 192(4245): 1189–1202. https://doi.org/10.1126/science.192.4245.1189. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Eddy JA, Gilliland RL, Hoyt DV. 1982. Changes in the solar constant and climatic effects. Nature 300(5894): 689–693. https://doi.org/10.1038/300689a0. [NASA ADS] [CrossRef] [Google Scholar]
- Egorova T, Rozanov E, Arsenovic P, Peter T, Schmutz W. 2018a. Contributions of natural and anthropogenic forcing agents to the early 20th century warming. Front Earth Sci 6: 206. https://doi.org/10.3389/feart.2018.00206. [Google Scholar]
- Egorova T, Schmutz W, Rozanov E, Shapiro AI, Usoskin I, Beer J, Tagirov RV, Peter T. 2018b. Revised historical solar irradiance forcing. Astron Astrophys 615: A85. https://doi.org/10.1051/0004-6361/201731199. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Egorova T, Schmutz W, Sukhodolov T, Rozanov E. 2019. Quantification of solar irradiance forcing by combining climate and phenological models. In: PMOD/WRC Annual Report 2018 23. https://www.pmodwrc.ch/en/institute/publications/annual-reports [Google Scholar]
- Fröhlich C. 2006. Solar irradiance variability since 1978. Revision of the PMOD composite during Solar Cycle 21. Space Sci Rev 125(1–4): 53–65. https://doi.org/10.1007/s11214-006-9046-5. [NASA ADS] [CrossRef] [Google Scholar]
- Fröhlich C. 2013. Total solar irradiance data. Space Sci Rev 176(1–4): 237–252. https://doi.org/10.1007/s11214-0119780-1. [Google Scholar]
- Kapyla M, Solanki S, Usoskin I. 2016. Understanding solar activity. In: Earth’s climate response to a changing Sun. Dudok de Wit T, Ermolli I, Haberreiter M, et al. (Eds.), pp. 97–102. ISBN 978-2-7598-1733-7. https://doi.org/10.1051/978-2-7598-1733-7. [Google Scholar]
- Kawamura K, Parrenin F, Lisiecki L, Uemura R, Vimeux F, et al. 2007. Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature 448(7156): 912–916. https://doi.org/10.1038/nature06015. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kopp G, Lawrence G, Rottman G. 2005. The Total Irradiance Monitor (TIM): Science Results. Sol. Phys. 230(1–2): 129–139. https://doi.org/10.1007/s11207-005-7433-9. [NASA ADS] [CrossRef] [Google Scholar]
- Kopp G, Lean JL. 2011. A new, lower value of total solar irradiance: Evidence and climate significance. Geophys Res Lett 38(1): L01706. https://doi.org/10.1029/2010GL045777. [Google Scholar]
- Lübken F-J, Nicoll K. 2016. Ground-based observations. In: Earth’s climate response to a changing Sun. Dudok de Wit T, Ermolli I, Haberreiter M, et al., (Eds.) EDP Sciences, France, pp. 139–153. ISBN 978-27598-1733-7. https://doi.org/10.1051/978-2-7598-1733-7. [Google Scholar]
- Marcott SA, Shakun JD, Clark PU, Mix AC. 2013. A reconstruction of regional and global temperature for the past 11,300 Years. Science 339(6124): 1198–1201. https://doi.org/10.1126/science.1228026. [CrossRef] [PubMed] [Google Scholar]
- Matthes K, Haigh J, Hanslmeier A. 2016. The impact of solar variability on climate. In: Earth’s climate response to a changing Sun. Dudok de Wit T, Ermolli I, Haberreiter M, et al. (Eds.) EDP Sciences, France, pp. 13–18. ISBN 978-2-7598-1733-7. https://doi.org/10.1051/978-2-7598-1733-7. [Google Scholar]
- Maycock A, Misios S. 2016. “Top-down” versus “Bottom-up” mechanisms for solar-climate coupling. In: Earth’s climate response to a changing Sun. Dudok de Wit T, Ermolli I, Haberreiter M, et al., (Eds.) EDP Sciences, France, pp. 237–246, ISBN 978-2-7598-1733-7. https://doi.org/10.1051/978-2-7598-1733-7. [Google Scholar]
- Morice CP, Kennedy JJ, Rayner NA, Winn J, Hogan E, Killick R, Dunn R, Osborn T, Jones P, Simpson I. 2020. An updated assessment of near-surface temperature change from 1850: the HadCRUT5 dataset. J Geophys Res Atmos 117(D8): e2019JD032352. https://doi.org/10.1029/2019JD032352. [Google Scholar]
- Nicollier C, Bonnet R, Schildknecht T, Neuenschwander D, Schmutz W. 2015. Chapter 3.2 Weather and Climate. In: Our Space Environment, Opportunities, Stakes and Dangers. Nicollier C, Gass V, (Eds.) EFPL Press, Lausanne. ISBN 9781498751834. [Google Scholar]
- Omoto Y, Aono Y. 1991. Effect of urban warming on blooming of Prunus yedoensis. Energy Build 15: 205–212. https://doi.org/10.1016/0378-7788(90)90132-3. [Google Scholar]
- Owens MJ, Lockwood M, Hawkins E, Usoskin I, Jones GS, Barnard L, Schurer A, Fasullo J. 2017. The Maunder minimum and the Little Ice Age: an update from recent reconstructions and climate simulations. J Space Weather Space Clim 7: A33. https://doi.org/10.1051/swsc/2017034. [Google Scholar]
- Prša A, Harmanec P, Torres G, Mamajek E, Asplund M, et al. 2016. Nominal values for selected solar and planetary quantities: IAU 2015 Resolution B3. Astron J 152(2): 41. https://doi.org/10.3847/00046256/152/2/41. [Google Scholar]
- Rypdal K, Nilsen T. 2016. Observations on paleoclimatic time scales. In: Earth’s climate response to a changing Sun. Dudok de Wit T, Ermolli I, Haberreiter M, et al., (Eds.) EDP Sciences, France, pp. 129–138. ISBN 978-2-7598-1733-7. https://doi.org/10.1051/978-2-7598-1733-7. [Google Scholar]
- Schmutz W, Fehlmann A, Finsterle W, Kopp G, Thuillier G. 2013. Total solar irradiance measurements with PREMOS/PICARD. In: American Institute of Physics Conference Series, vol. 1531 of, pp. 624–627. https://doi.org/10.1063/1.4804847. [Google Scholar]
- Schmutz W, Haberreiter M. 2016. Orbital forcing of glacial – interglacial cycles. In: Earth’s climate response to a changing Sun. Dudok de Wit T, Ermolli I, Haberreiter M, et al., (Eds.) EDP Sciences, France, pp. 103–109, ISBN 978-2-7598-1733-7. https://doi.org/10.1051/978-2-7598-1733-7. [Google Scholar]
- Shapiro AI, Schmutz W, Rozanov E, Schoell M, Haberreiter M, Shapiro AV, Nyeki S. 2011. A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing. Astron Astrophys 529: A67. https://doi.org/10.1051/0004-6361/201016173. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Shapiro AI, Solanki SK, Krivova NA, Cameron RH, Yeo KL, Schmutz WK. 2017. The nature of solar brightness variations. Nature Astron 1: 612–616. https://doi.org/10.1038/s41550-017-0217-y. [Google Scholar]
- Solanki SK, Krivova NA, Haigh JD. 2013. Solar Irradiance Variability and Climate. Ann Rev Astron Astrophys 51(1): 311–351. https://doi.org/10.1146/annurev-astro-082812-141007. [Google Scholar]
- Sukhodolov T, Egorova T, Stenke A, Ball WT, Brodowsky C, Chiodo G, Feinberg A, Friedel M, Karagodin-Doyennel A, Peter T, Vattioni S, Rozanov E. 2021. Atmosphere-ocean-aerosol-chemistry-climate model SOCOLv4.0: description and validation. Geosci Model Dev Discuss. [preprint], https://doi.org/10.5194/gmd-2021-35, in review. [Google Scholar]
- Sukhodolov T, Rozanov E, Shapiro AI, Anet J, Cagnazzo C, Peter T, Schmutz W. 2014. Evaluation of the ECHAM family radiation codes performance in the representation of the solar signal. Geosci Model Dev 7(6): 2859–2866. https://doi.org/10.5194/gmd-7-2859-2014. [Google Scholar]
- Urban SE, Seidelmann PK. 2012. Explanatory supplement to the astronomical almanac, 3rd edn. University Science Books, US, Sausalito, United States. [Google Scholar]
- Usoskin IG, Hulot G, Gallet Y, Roth R, Licht A, Joos F, Kovaltsov GA, Thebault E, Khokhlov A. 2014. Evidence for distinct modes of solar activity. Astron Astrophys 562: L10. https://doi.org/10.1051/0004-6361/201423391. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- van Loon H, Meehl GA, Shea DJ. 2007. Coupled air-sea response to solar forcing in the Pacific region during northern winter. J Geophys Res Atmos 112(D2): D02108. https://doi.org/10.1029/2006JD007378. [Google Scholar]
- Wild M, Folini D, Hakuba M, Schär C, Seneviratne S, Kato S, Rutan D, Ammann C, Wood E, König-Langlo G. 2015. The energy balance over land and oceans: An assessment based on direct observations and CMIP5 climate models. Clim Dyn 44: 3393–3429. https://doi.org/10.1007/s00382-014-2430-z. [Google Scholar]
- Willson RC, Mordvinov AV. 2003. Secular total solar irradiance trend during solar cycles 21–23. Geophys Res Lett 30(5): 1199. https://doi.org/10.1029/2002GL016038. [Google Scholar]
- Yeo KL, Solanki SK, Krivova NA, Rempel M, Anusha LS, Shapiro AI, Tagirov RV, Witzke V. 2020. The dimmest state of the Sun. Geophys Res Lett 47(19). https://doi.org/1029/2020GL090243. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.