Open Access
Issue |
J. Space Weather Space Clim.
Volume 11, 2021
|
|
---|---|---|
Article Number | 12 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/swsc/2021002 | |
Published online | 15 February 2021 |
- Akmaev RA, Fuller-Rowell TJ, Wu F, Forbes JM, Zhang X, Anghel AF, Iredell MD, Moorthi S, Juang HM. 2008. Tidal variability in the lower thermosphere: Comparison of whole atmosphere model (WAM) simulations with observations from TIMED. Geophys Res Lett 35: L03810. https://doi.org/10.1029/2007GL032584. [CrossRef] [Google Scholar]
- Bowman B, Tobiska WK, Marcos F, Huang C, Lin C, Burke W. 2008. A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices. In: AIAA/AAS Astrodynamics Specialist Conference, AIAA, Honolulu, HI. [Google Scholar]
- Bruinsma SL. 2015. The DTM-2013 thermosphere model. J Space Weather Space Clim 5: A1. https://doi.org/10.1051/swsc/2012005. [CrossRef] [Google Scholar]
- Bruinsma SL, Forbes JM. 2007. Global observation of traveling atmospheric disturbances (TADs) in the thermosphere. Geophys Res Lett 34: L14103. https://doi.org/10.1029/2007GL030243. [CrossRef] [Google Scholar]
- Bruinsma S, Forbes JM, Nerem S, Zhang X. 2006. Thermosphere density response to the 20–21 November 2003 solar and geomagnetic storm from CHAMP and GRACE accelerometer data. J Geophys Res 11: A06303. https://doi.org/10.1029/2005JA011284. [Google Scholar]
- Bruinsma SL, Doornbos E, Bowman BR. 2014. Validation of GOCE densities and thermosphere model evaluation. Adv Space Res 54: 576–585. https://doi.org/10.1016/j.asr.2014.04.008. [CrossRef] [Google Scholar]
- Bruinsma S, Sutton E, Solomon SC, Fuller-Rowell T, Fedrizzi M. 2018. Space weather modeling capabilities assessment: Neutral density and orbit determination at LEO. Space Weather 16(11): 1806–1816. https://doi.org/10.1029/2018SW002027. [CrossRef] [Google Scholar]
- Bussy-Virat CD, Ridley AJ, Getchius JW. 2018. Effects of uncertainties in the atmospheric density on the probability of collision between space objects. Space Weather 16: 519–537. https://doi.org/10.1029/2017SW001705. [CrossRef] [Google Scholar]
- Champion KSW, Marcos FA. 1973. The triaxial-accelerometer system on atmosphere explorer. Radio Sci 8: 297–303. [CrossRef] [Google Scholar]
- Codrescu MV, Negrea C, Fedrizzi M, Fuller-Rowell TJ, Dobin A, Jakowsky N, Khalsa H, Matsuo T, Maruyama N. 2012. A real-time run of the Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics (CTIPe) model. Space Weather 10: S02001. https://doi.org/10.1029/2011SW000736. [CrossRef] [Google Scholar]
- Doornbos E. 2011. Thermospheric density and wind determination from satellite dynamics. PhD Dissertation, University of Delft, Delft, the Netherlands, 188 p. Available at http://repository.tudelft.nl/. [Google Scholar]
- Forbes JM, Roble RG, Marcos FA. 1987. Thermospheric dynamics during the March 22, 1979 magnetic storm: 2. Comparisons of model predictions with observations. J Geophys Res 92: 6069–6081. [CrossRef] [Google Scholar]
- Forbes JM, Lu G, Bruinsma S, Nerem S, Zhang X. 2005. Thermosphere density variations due to the 15–24 April 2002 solar events from CHAMP/STAR accelerometer measurements. J. Geophys. Res. 110: A12S27. https://doi.org/10.1029/2004JA010856. [Google Scholar]
- Fuller-Rowell TJ, Evans DS. 1987. Height integrated Pedersen and Hall conductivity patterns inferred from the TIROS-NOAA satellite data. J Geophys Res 92: 7606–7618. [CrossRef] [Google Scholar]
- Fuller-Rowell TJ, Rees D, Quegan S, Moffett RJ. 1991. Numerical simulations of the sub-auroral F-region trough. J Atmos Terr Phys 53: 529–540. [CrossRef] [Google Scholar]
- Fuller-Rowell TJ, Rees D, Quegan S, Moffett RJ, Codrescu MV, Millward GH. 1996. A coupled thermosphere-ionosphere model (CTIM). In: Handbook of ionospheric models, Schunk RW (Ed.), Utah State Univ, Logan, Utah, pp. 217–238. [Google Scholar]
- Fuller-Rowell TJ, Akmaev RA, Wu F, Anghel A, Maruyama N, Anderson DN, Codrescu MV, Iredell M, Moorthi S, Juang HM, Hou YT, Millward G. 2008. Impact of terrestrial weather on the upper atmosphere. Geophys Res Lett 35: L09808. https://doi.org/10.1029/2007GL032911. [Google Scholar]
- Hagan ME, Roble RG, Hackney J. 2001. Migrating thermospheric tides. J Geophys Res 106: 12739–12752. https://doi.org/10.1029/2000JA000344. [CrossRef] [Google Scholar]
- Heelis RA, Lowell JK, Spiro RW. 1982. A model of the high-latitude ionosphere convection pattern. J Geophys Res 87: 6339. https://doi.org/10.1029/JA087iA08p06339. [CrossRef] [Google Scholar]
- Hejduk MD, Snow DE. 2018. The effect of neutral density estimation errors on satellite conjunction serious event rates. Space Weather 16: 849–869. https://doi.org/10.1029/2017SW001720. [CrossRef] [Google Scholar]
- Jacchia LG, Slowey J. 1963. Accurate drag determinations for eight artificial satellites: Atmospheric densities and temperatures. Smithson Contrib Astrophys 8: 1–99. [CrossRef] [Google Scholar]
- Kalafatoglu Eyiguler EC, Shim JS, Kuznetsova MM, Kaymaz Z, Bowman BR, et al. 2019. Quantifying the storm time thermospheric neutral density variations using model and observations. Space Weather 17: 269–284. https://doi.org/10.1029/2018SW002033. [CrossRef] [Google Scholar]
- Knipp D, Kilcommons L, Hunt L, Mlynczak M, Pilipenko V, Bowman B, Deng Y, Drake K. 2013. Thermospheric damping response to sheath-enhanced geospace storms. Geophys Res Lett 40: 1263–1267. https://doi.org/10.1002/grl.50197. [CrossRef] [Google Scholar]
- Knipp DJ, Pette DV, Kilcommons LM, Isaacs TL, Cruz AA, Mlynczak MG, Hunt LA, Lin CY. 2017. Thermospheric nitric oxide response to shock-led storms. Space Weather 15: 325–342. https://doi.org/10.1002/2016SW001567. [CrossRef] [Google Scholar]
- Liu H, Luehr H. 2005. Strong disturbance of the upper thermospheric density due to magnetic storms: CHAMP observations. J Geophys Res 110: A09S29. https://doi.org/10.1029/2004JA010908. [Google Scholar]
- Marsh DR, Solomon SC, Reynolds AE. 2004. Empirical model of nitric oxide in the lower thermosphere. J Geophys Res 109: A07301. https://doi.org/10.1029/2003JA010199. [Google Scholar]
- Maute A. 2017. Thermosphere-ionosphere-electrodynamics general circulation model for the ionospheric connection explorer: TIEGCM-ICON. Space Sci Rev 212: 523–551. https://doi.org/10.1007/s11214-017-0330-3. [CrossRef] [Google Scholar]
- Mehta PM, Walker AC, Sutton EK, Godinez HC. 2017. New density estimates derived using accelerometers on board the CHAMP and GRACE satellites. Space Weather 15: 558–576. https://doi.org/10.1002/2016SW001562. [CrossRef] [Google Scholar]
- Millward GH, Müller-Wodarg ICF, Aylward AD, Fuller-Rowell TJ, Richmond AD, Moffett RJ. 2001. An investigation into the influence of tidal forcing on F region equatorial vertical ion drift using a global ionosphere-thermosphere model with coupled electrodynamics. J Geophys Res 106: 24733–24744. [CrossRef] [Google Scholar]
- Müller-Wodarg ICF, Aylward AD, Fuller-Rowell TJ. 2001. Tidal oscillations in the thermosphere: A theoretical investigation of their sources. J Atmos Sol-Terr Phys 63: 899–914. [CrossRef] [Google Scholar]
- Nier AO, Potter WE, Hickman DR, Mauersberger K. 1973. The open-source neutral-mass spectrometer on atmosphere explorer-C, -D, -E. Radio Sci 8: 271–276. [CrossRef] [Google Scholar]
- Pedatella NM, Fuller-Rowell T, Wang H, Jin H, Miyoshi Y, et al. 2014. The neutral dynamics during the 2009 sudden stratosphere warming simulated by different whole atmosphere models. J Geophys Res 119: 1306–1324. https://doi.org/10.1002/2013JA019421. [CrossRef] [Google Scholar]
- Picone JM, Hedin AE, Drob DP, Aikin AC. 2002. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J Geophys Res 107(A12): 1468. https://doi.org/10.1029/2002JA009430. [Google Scholar]
- Qian L, Burns AG, Emery BA, Foster B, Lu G, Maute A, Richmond AD, Roble RG, Solomon SC, Wang W. 2014. The NCAR TIE-GCM: A community model of the coupled thermosphere/ionosphere system. In: Modeling the ionosphere-thermosphere system, Huba J, Schunk R, Khazanov G (Eds.),AGU Geophysical Monograph Series, Vol. 201, pp. 73. https://doi.org/10.1002/9781118704417.ch7. [CrossRef] [Google Scholar]
- Richmond AD, Ridley EC, Roble RG. 1992. A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys Res Lett 19: 601. https://doi.org/10.1029/92GL00401. [CrossRef] [Google Scholar]
- Roble RG, Ridley EC, Richmond AD, Dickinson RE. 1988. A coupled thermosphere/ionosphere general circulation model. Geophys Res Lett 15: 1325. https://doi.org/10.1029/GL015i012p01325. [NASA ADS] [CrossRef] [Google Scholar]
- Skoug RM, Gosling JT, Steinberg JT, McComas DJ, Smith CW, Ness NF, Hu Q, Burlaga LF. 2004. Extremely high speed solar wind: 29–30 October 2003. J Geophys Res 109: A09102. https://doi.org/10.1029/2004JA010494. [Google Scholar]
- Solomon SC, Qian L. 2005. Solar extreme-ultraviolet irradiance for general circulation models. J Geophys Res 110: A10306. https://doi.org/10.1029/2005JA011160. [CrossRef] [Google Scholar]
- Solomon SC, Burns AG, Emery BA, Mlynczak MG, Qian L, Wang W, Weimer DR, Wiltberger M. 2012. Modeling studies of the impact of high-speed streams and co-rotating interaction regions on the thermosphere-ionosphere. J Geophys Res 117: A00L11. https://doi.org/10.1029/2011JA017417. [Google Scholar]
- Storz MF, Bowman BR, Branson MJI, Casali SJ, Tobiska WK. 2005. High accuracy satellite drag model (HASDM). Adv Space Res 36: 2497–2505. https://doi.org/10.1016/j.asr.2004.02.020. [CrossRef] [Google Scholar]
- Sutton EK. 2018. A new method of physics-based data assimilation for the quiet and disturbed thermosphere. Space Weather 16: 736–753. https://doi.org/10.1002/2017SW00178. [CrossRef] [Google Scholar]
- Sutton EK, Thayer JP, Wang W, Solomon SC, Liu X, Foster BT. 2015. A self-consistent model of helium in the thermosphere. J Geophys Res 120: 6884–6900. https://doi.org/10.1002/2015JA021223. [CrossRef] [Google Scholar]
- Weimer DR. 2005. Improved ionospheric electrodynamic models and application to calculating Joule heating rates. J Geophys Res 110: A05306. https://doi.org/10.1029/2004JA010884. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.