Open Access
Issue |
J. Space Weather Space Clim.
Volume 11, 2021
Topical Issue - Space Weather Instrumentation
|
|
---|---|---|
Article Number | 11 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/swsc/2020070 | |
Published online | 08 February 2021 |
- Antonucci E, Romoli M, Andretta V, Fineschi S, Heinzel P, et al. 2019. Metis: The solar orbiter visible light and ultraviolet coronal imager. A&A 642: A10. https://doi.org/10.1051/0004-6361/201935338. [Google Scholar]
- Baumbach S. 1937. Strahlung, Ergiebigkeit und Elektronendichte der Sonnenkorona. Astronomische Nachrichten 263(6): 121–134. https://doi.org/10.1002/asna.19372630602. [NASA ADS] [CrossRef] [Google Scholar]
- Bentley R, Freeland S. 1998. SOLARSOFT – An analysis environment for solar physics. In: Proceedings of “A Crossroad for European Solar and Heliospheric Physics”, ESA Publication SP 417, 225 p. URL http://articles.adsabs.harvard.edu/pdf/1998ESASP.417…225B. [Google Scholar]
- Bothmer V, Schwenn R. 1997. The structure and origin of magnetic clouds in the solar wind. In: Annales Geophysicae, Vol. 16, Annales Geophysicae by Copernicus Publications, Göttingen, Germany, pp. 1–24. https://doi.org/10.1007/s005850050575. [NASA ADS] [CrossRef] [Google Scholar]
- Bothmer V, Daglis IA. 2007. Space weather: Physics and effects, Springer, Berlin, Heidelberg, Germany. https://doi.org/10.1007/978-3-540-34578-7. [CrossRef] [Google Scholar]
- Boursier Y, Lamy P, Llebaria A, Goudail F, Robelus S. 2009. The ARTEMIS catalog of LASCO coronal mass ejections. Sol Phys 257(1): 125–147. https://doi.org/10.1007/s11207-009-9370-5. [NASA ADS] [CrossRef] [Google Scholar]
- Brueckner GE, Howard RA, Koomen MJ, Korendyke CM, Michels DJ, et al. 1995. The Large Angle Spectroscopic Coronagraph (LASCO). Sol Phys 162: 357–402. https://doi.org/10.1007/BF00733434. [CrossRef] [Google Scholar]
- Byrne JP, Morgan H, Habbal SR, Gallagher PT. 2012. Automatic detection and tracking of coronal mass ejections. II. Multiscale filtering of coronagraph images. Astrophys J 752(2): 145. https://doi.org/10.1088/0004-637X/752/2/145. [NASA ADS] [CrossRef] [Google Scholar]
- Cabinet Office. 2017. National risk register of civil emergencies 2017 edition, Cabinet Office, 70 Whitehall London SW1A 2AS. URL https://www.gov.uk/government/publications/national-risk-register-of-civil-emergencies-2017-edition. [Google Scholar]
- Cannon P, Angling M, Barclay L, Curry C, Dyer C, et al. 2013. Extreme space weather: impacts on engineered systems and infrastructure, Royal Academy of Engineering, Prince Philip House, 3 Carlton House Terrace, London SW1Y 5DG. ISBN 1-903496-95-0. URL https://www.raeng.org.uk/publications/reports/space-weather-full-report. [Google Scholar]
- Cremades H, Bothmer V. 2004. On the three-dimensional configuration of coronal mass ejections. A&A 422(1): 307–322. https://doi.org/10.1051/0004-6361:20035776. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- de Koning CA, Pizzo VJ. 2011. Polarimetric localization: A new tool for calculating the CME speed and direction of propagation in near-real time. Space Weather 9(3). https://doi.org/10.1029/2010SW000595. [Google Scholar]
- de Koning CA, Pizzo VJ, Biesecker DA. 2009. Geometric localization of CMEs in 3D space using STEREO Beacon data: First results. Sol Phys 256(1): 167–181. https://doi.org/10.1007/s11207-009-9344-7. [CrossRef] [Google Scholar]
- de Wijn AG, Burkepile JT, Tomczyk S, Nelson PG, Huang P, Gallagher D. 2012. Stray light and polarimetry considerations for the COSMO K-coronagraph. In: Ground-based and Airborne Telescopes IV, Vol. 8444, International Society for Optics and Photonics, SPIE, Bellingham, WA, USA, 84443N p. https://doi.org/10.1117/12.926511. [CrossRef] [Google Scholar]
- Domingo V, Fleck B, Poland AI. 1995. SOHO: The Solar and Heliospheric Observatory. In: The High Latitude Heliosphere, Marsden RG (Ed.), Springer, Netherlands, Dordrecht, pp. 81–84. ISBN 978-94-011-0167-7. https://doi.org/10.1007/BF00768758. [CrossRef] [Google Scholar]
- Driesman A, Hynes S, Cancro G. 2008. The STEREO Observatory, 17–44, Springer, New York, New York, NY. ISBN 978-0-387-09649-0. https://doi.org/10.1007/978-0-387-09649-0_3. [Google Scholar]
- Eastwood JP, Biffis E, Hapgood MA, Green L, Bisi MM, Bentley RD, Wicks R, McKinnell L-A, Gibbs M, Burnett C. 2017. The economic impact of space weather: Where do we stand? Risk Anal 37(2): 206–218. https://doi.org/10.1111/risa.12765, https://onlinelibrary.wiley.com/doi/abs/10.1111/risa.12765. [CrossRef] [Google Scholar]
- Eyles C, Simnett G, Cooke M, Jackson B, Buffington A, Hick P, Waltham N, King J, Anderson P, Holladay P. 2003. The solar mass ejection imager (SMEI). Sol Phys 217(2): 319–347. https://doi.org/10.1023/B:SOLA.0000006903.75671.49. [NASA ADS] [CrossRef] [Google Scholar]
- Eyles C, Harrison R, Davis C, Waltham N, Shaughnessy B, et al. 2009. The heliospheric imagers onboard the STEREO mission. Sol Phys 254(2): 387–445. https://doi.org/10.1007/s11207-008-9299-0. [CrossRef] [Google Scholar]
- Gopalswamy N, Fleck B, Gurman J. 2005. Major scientific results from SOHO on coronal mass ejections. In: Proceedings of Asia Pacific Regional Conference of IAA “Bring Space Benefits to the Asia Region”. URL https://cdaw.gsfc.nasa.gov/publications/gopal/gopal2005IAA.pdf. [Google Scholar]
- Gopalswamy N, Yashiro S, Michalek G, Stenborg G, Vourlidas A, Freeland S, Howard R. 2009. The SOHO/LASCO CME catalog. Earth Moon Planet 104: 295–313. https://doi.org/10.1007/s11038-008-9282-7. [NASA ADS] [CrossRef] [Google Scholar]
- Harboe-Sorensen R, Daly E, Teston F, Schweitzer H, Nartallo R, Perol P, Vandenbussche F, Dzitko H, Cretolle J. 2001. Observation and analysis of single event effects on-board the SOHO satellite. In: RADECS 2001. 2001 6th European Conference on Radiation and Its Effects on Components and Systems (Cat. No. 01TH8605), IEEE, New York, NY, USA, pp. 37–43. URL https://pdfs.semanticscholar.org/1f20/332c2ec6afb11e08a44c9a77ee5415962bb2.pdf. [Google Scholar]
- Harrison RA, Davies JA, Biesecker D, Gibbs M. 2017. The application of heliospheric imaging to space weather operations: Lessons learned from published studies. Space Weather 15(8): 985–1003. https://doi.org/10.1002/2017SW001633. [CrossRef] [Google Scholar]
- Howard R, Moses J, Vourlidas A, Newmark J, Socker D, et al. 2008. Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci Rev 136(1–4): 67–115. https://doi.org/10.1007/s11214-008-9341-4. [Google Scholar]
- Howard RA, Vourlidas A, Colaninno RC, Korendyke CM, Plunkett SP, et al. 2019. The Solar Orbiter Heliospheric Imager (SoloHI). A&A 642: A13. https://doi.org/10.1051/0004-6361/201935202. [Google Scholar]
- Illing RME, Hundhausen AJ. 1985. Observation of a coronal transient from 1.2 to 6 solar radii. J Geophys Res: Space Phys 90(A1): 275–282. https://doi.org/10.1029/JA090iA01p00275. [NASA ADS] [CrossRef] [Google Scholar]
- Jackson BV, Buffington A, Hick P, Altrock R, Figueroa S, et al. 2004. The solar mass-ejection imager (SMEI) mission. Sol Phys 225(1): 177–207. https://doi.org/10.1007/s11207-004-2766-3. [NASA ADS] [CrossRef] [Google Scholar]
- Kaiser ML, Kucera T, Davila J, Cyr OS, Guhathakurta M, Christian E. 2008. The STEREO mission: An introduction. In: The STEREO mission, Springer, Berlin, Heidelberg, Germany, pp. 5–16. https://doi.org/10.1007/s11214-007-9277-0. [CrossRef] [Google Scholar]
- Kimura H, Mann I. 1998. Brightness of the solar F-corona. Earth Planets Space 50(6–7): 493–499. https://doi.org/10.1186/BF03352140. [NASA ADS] [CrossRef] [Google Scholar]
- Kraft S, Luntama J-P, Glover A. 2017. ESA’s enhanced space weather monitoring system – Towards a holistic view from the lagrange points L1 and L5. In: Space Research Today, Vol. 199, Published by Elsevier for COSPAR, pp. 6–22. https://doi.org/10.1016/j.srt.2017.07.009. [Google Scholar]
- Liu YD, Luhmann JG, Kajdič P, Kilpua EK, Lugaz N, et al. 2014. Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections. Nat Commun 5: 3481. https://doi.org/10.1038/ncomms4481. [Google Scholar]
- Middleton KF, Heiko Anwand H, Bothmer V, Davies JA, Ergenzinger K, et al. 2016. A coronagraph for operational space weather prediction. In: International Conference on Space Optics, Vol. 18 of International Conference on Space Optics. https://doi.org/10.1117/12.2297704. [Google Scholar]
- Middleton KF, Anwand H, Bothmer V, Davies JA, Earle A, et al. 2019. SCOPE: A coronagraph for operational space weather prediction: Phase A/B1 design and breadboarding. In: International Conference on Space Optics – ICSO 2018, Vol. 11180, Sodnik Z, Karafolas N, Cugny B (Eds.), International Society for Optics and Photonics, SPIE, Bellingham, WA, USA, pp. 1248–1254. https://doi.org/10.1117/12.2536037. [Google Scholar]
- Millward G, Biesecker D, Pizzo V, Koning CA. 2013. An operational software tool for the analysis of coronagraph images: Determining CME parameters for input into the WSA-Enlil heliospheric model. Space Weather 11(2): 57–68. https://doi.org/10.1002/swe.20024. [CrossRef] [Google Scholar]
- Morrill JS, Korendyke CM, Brueckner GE, Giovane F, Howard RA, et al. 2006. Calibration of the Soho/Lasco C3 white light coronagraph. Sol Phys 233(2): 331–372. https://doi.org/10.1007/s11207-006-2058-1. [NASA ADS] [CrossRef] [Google Scholar]
- Mrotzek N. 2020. Analysis of coronal mass ejection kinematics and dependencies on source region properties. Ph.D. Thesis, Georg-August-Universität, Göttingen. https://doi.org/21.11130/00-1735-0000-0005-1333-C. [Google Scholar]
- Olmedo O, Zhang J, Wechsler H, Poland A, Borne K. 2008. Automatic detection and tracking of coronal mass ejections in coronagraph time series. In: Solar image analysis and visualization, Springer, Berlin, Heidelberg, Germany, pp. 275–289. https://doi.org/10.1007/s11207-007-9104-5. [CrossRef] [Google Scholar]
- Pant V, Willems S, Rodriguez L, Mierla M, Banerjee D, Davies J. 2016. Automated detection of coronal mass ejections in STEREO Heliospheric Imager data. Astrophys J 833(1): 80. https://doi.org/10.3847/1538-4357/833/1/80. [CrossRef] [Google Scholar]
- Riley P, Baker D, Liu YD, Verronen P, Singer H, Güdel M. 2018. Extreme space weather events: From cradle to grave. Space Sci Rev 214(1): 21. https://doi.org/10.1007/s11214-017-0456-3. [NASA ADS] [CrossRef] [Google Scholar]
- Robbrecht E, Berghmans D. 2004. Automated recognition of coronal mass ejections (CMEs) in near-real-time data. A&A 425: 1097–1106. https://doi.org/10.1051/0004-6361:20041302. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Robbrecht E, Berghmans D, Van der Linden RAM. 2009. Automated LASCO CME catalog for solar cycle 23. Are CMEs Scale Invariant? Astrophys J 691: 1222–1234. https://doi.org/10.1088/0004-637X/691/2/1222. [CrossRef] [Google Scholar]
- Stenborg G, Howard RA, Stauffer JR. 2018. Characterization of the white-light brightness of the F-corona between 5° and 24° elongation. Astrophys J 862(2): 168. https://doi.org/10.3847/1538-4357/aacea3. [CrossRef] [Google Scholar]
- Temmer M, Nitta NV. 2015. Interplanetary propagation behavior of the fast coronal mass ejection on 23 July 2012. Sol Phys 290: 919–932. https://doi.org/10.1007/s11207-014-0642-3. [NASA ADS] [CrossRef] [Google Scholar]
- Thernisien A. 2011. Implementation of the Graduated Cylindrical Shell Model for the three-dimensional reconstruction of coronal mass ejections. Astrophys J Suppl 194: 33. https://doi.org/10.1088/0067-0049/194/2/33. [Google Scholar]
- Thernisien AFR, Howard RA, Vourlidas A. 2006. Modeling of flux rope coronal mass ejections. Astrophys J 652: 763–773. https://doi.org/10.1086/508254. [CrossRef] [Google Scholar]
- Vourlidas A, Howard RA, Plunkett SP, Korendyke CM, Thernisien AF, et al. 2015. The wide-field imager for Solar Probe Plus (WISPR). Space Sci Rev 204: 1–48. https://doi.org/10.1007/s11214-014-0114-y. [Google Scholar]
- Webb DF, Howard TA. 2012. Coronal mass ejections: Observations. Living Rev Sol Phys 9(1), 3(1): 3. https://doi.org/10.12942/lrsp-2012-3. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.