Open Access
Issue |
J. Space Weather Space Clim.
Volume 11, 2021
|
|
---|---|---|
Article Number | 5 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/swsc/2020076 | |
Published online | 22 January 2021 |
- Astafyeva E, Zakharenkova I, Förster M. 2015. Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrumental overview. J Geophys Res Space Phys 120: 9023–9037. https://doi.org/10.1002/2015JA021629. [CrossRef] [Google Scholar]
- Austen JR, Franke SJ, Liu CH. 1988. Ionospheric imaging using computerized tomography. Radio Sci 23: 299–307. https://doi.org/10.1029/RS023i003p00299. [CrossRef] [Google Scholar]
- Belehaki A, Jakowski N, Reinisch BW. 2004. Plasmaspheric electron content derived from GPS TEC and digisonde ionograms. Adv Space Res 33: 833–837. https://doi.org/10.1016/j.asr.2003.07.008. [CrossRef] [Google Scholar]
- Borovsky JE, Valdivia JA. 2018. The Earth’s magnetosphere: a systems science overview and assessment. Surv Geophys 39: 817–859. https://doi.org/10.1007/s10712-018-9487-x. [CrossRef] [Google Scholar]
- Carpenter DL. 1970. Whistler evidence of the dynamic behavior of the duskside bulge in the plasmasphere. J Geophys Res 75: 3837–3847. https://doi.org/10.1029/JA075i019p03837. [CrossRef] [Google Scholar]
- Carpenter DL, Anderson RR. 1992. An ISEE/Whistler model of equatorial electron density in the magnetosphere. J Geophys Res Space Phys 97: 1097–1108. https://doi.org/10.1029/91JA01548. [CrossRef] [Google Scholar]
- Chen P, Yao Y. 2015. Research on global plasmaspheric electron content by using LEO occultation and GPS data. Adv Space Res 55: 2248–2255. https://doi.org/10.1016/j.asr.2015.02.004. [CrossRef] [Google Scholar]
- Chen P, Yao Y, Li Q, Yao W. 2017. Modeling the plasmasphere based on LEO satellites onboard GPS measurements. J Geophys Res Space Phys 122: 1221–1233. https://doi.org/10.1002/2016JA023375. [CrossRef] [Google Scholar]
- Cherniak IV, Zakharenkova IE, Dzubanov D, Krankowski A. 2014. Analysis of the ionosphere/plasmasphere electron content variability during strong geomagnetic storm. Adv Space Res 54: 586–594. https://doi.org/10.1016/j.asr.2014.04.011. [CrossRef] [Google Scholar]
- Fagundes PR, Cardoso FA, Fejer BG, Venkatesh K, Ribeiro BAG, Pillat VG. 2016. Positive and negative GPS-TEC ionospheric storm effects during the extreme space weather event of March 2015 over the Brazilian sector. J Geophys Res Space Phys 121: 5613–5625. https://doi.org/10.1002/2015JA022214. [CrossRef] [Google Scholar]
- Foelsche U, Kirchengast G. 2002. A simple “geometric” mapping function for the hydrostatic delay at radio frequencies and assessment of its performance. Geophys Res Lett 29: 111-1–111-4. https://doi.org/10.1029/2001GL013744. [CrossRef] [Google Scholar]
- Gallagher DL, Craven PD, Comfort RH. 2000. Global core plasma model. J Geophys Res Space Phys 105: 18819–18833. https://doi.org/10.1029/1999JA000241. [CrossRef] [Google Scholar]
- Garner TW, Taylor BT, Gaussiran TL II, Coley WR, Hairston MR, Rich FJ. 2010. Statistical behavior of the topside electron density as determined from DMSP observations: A probabilistic climatology. J Geophys Res Space Phys 115: A07306. https://doi.org/10.1029/2009JA014695. [CrossRef] [Google Scholar]
- Gerzen T, Feltens J, Jakowski N, Galkin I, Denton R, Reinisch B, Zandbergen R. 2015. Validation of plasmasphere electron density reconstructions derived from data on board CHAMP by IMAGE/RPI data. Adv Space Res 55: 170–183. https://doi.org/10.1016/j.asr.2014.08.005. [CrossRef] [Google Scholar]
- Gulyaeva TL, Arikan F, Stanislawska I. 2011. Inter-hemispheric imaging of the ionosphere with the upgraded IRI-Plas model during the space weather storms. Earth Planets Space 63: 929–939. https://doi.org/10.5047/eps.2011.04.007. [CrossRef] [Google Scholar]
- Hajj GA, Lee LC, Pi X, Romans LJ, Schreiner WS, Straus PR, Wang C. 2000. COSMIC GPS ionospheric sensing and space weather. Terr Atmos Ocean Sci 11: 235–272. https://doi.org/10.3319/TAO.2000.11.1.235(COSMIC). [CrossRef] [Google Scholar]
- Heilig B, Lühr H. 2018. Quantifying the relationship between the plasmapause and the inner boundary of small-scale field-aligned currents, as deduced from Swarm observations. Ann Geophys 36: 595–607. https://doi.org/10.5194/angeo-36-595-2018. [CrossRef] [Google Scholar]
- Heise S, Jakowski N, Wehrenpfennig A, Reigber Ch, Lühr H. 2002. Sounding of the topside ionosphere/plasmasphere based on GPS measurements from CHAMP: Initial results. Geophys Res Lett 29: 44-1–44-4. https://doi.org/10.1029/2002GL014738. [CrossRef] [Google Scholar]
- Hobiger T, Kondo T, Koyama Y. 2008. Constrained simultaneous algebraic reconstruction technique (C-SART) – a new and simple algorithm applied to ionospheric tomography. Earth Planets Space 60: 727–735. https://doi.org/10.1186/BF03352821. [CrossRef] [Google Scholar]
- Hoque MM, Jakowski N. 2011. A new global empirical NmF2 model for operational use in radio systems. Radio Sci 46: RS6015. https://doi.org/10.1029/2011RS004807. [Google Scholar]
- Hoque MM, Jakowski N. 2012. A new global model for the ionospheric F2 peak height for radio wave propagation. Ann Geophys 30: 787–809. https://doi.org/10.5194/angeo-30-797-2012. [CrossRef] [Google Scholar]
- Huang X, Reinisch BW, Song P, Green JL, Gallagher DL. 2004. Developing an empirical density model of the plasmasphere using IMAGE/RPI observations. Adv Space Res 33: 829–832. https://doi.org/10.1016/j.asr.2003.07.007. [CrossRef] [Google Scholar]
- Jakowski N, Hoque MM. 2018. A new electron density model of the plasmasphere for operational applications and services. J Space Weather Space Clim 8: A16. https://doi.org/10.1051/swsc/2018002. [CrossRef] [Google Scholar]
- Jakowski N, Hoque MM, Mayer C. 2011. A new global TEC model for estimating transionospheric radio wave propagation errors. J Geod 85: 965–974. https://doi.org/10.1007/s00190-011-0455-1. [Google Scholar]
- Katus RM, Gallagher DL, Liemohn MW, Keesee AM, Sarno-Smith LK. 2015. Statistical storm time examination of MLT-dependent plasmapause location derived from IMAGE EUV. J Geophys Res Space Phys 120: 5545–5559. https://doi.org/10.1002/2015JA021225. [CrossRef] [Google Scholar]
- Kil H, Kwak Y-S, Oh S-J, Talaat ER, Paxton LJ, Zhang Y. 2011. The source of the longitudinal asymmetry in the ionospheric tidal structure. J Geophys Res 116: A09328. https://doi.org/10.1029/2011JA016781. [Google Scholar]
- Krypiak-Gregorczyk A. 2019. Ionosphere response to three extreme events occurring near spring equinox in 2012, 2013 and 2015, observed by regional GNSS-TEC model. J Geod 93: 931–951. https://doi.org/10.1007/s00190-018-1216-1. [CrossRef] [Google Scholar]
- Lemaire JF, Batteux SG, Slypen IN. 2005. The influence of a southward and northward turning of the interplanetary magnetic field on the geomagnetic cut-off of cosmic rays, on the mirror points positions of geomagnetically trapped particles, and on their rate of precipitations in the atmosphere. J Atmos Sol-Terr Phys 67: 719–727. https://doi.org/10.1016/j.jastp.2004.09.008. [CrossRef] [Google Scholar]
- Liu X, Liu W, Cao JB, Fu HS, Yu J, Li X. 2015. Dynamic plasmapause model based on THEMIS measurements. J Geophys Res Space Phys 120: 10543–10556. https://doi.org/10.1002/2015JA021801. [CrossRef] [Google Scholar]
- Norberg J, Vierinen J, Roininen L, Orispää M, Kauristie K, Rideout WC, Coster AJ, Lehtinen MS. 2018. Gaussian markov random field priors in ionospheric 3-D multi-instrument tomography. IEEE Trans Geosci Remote Sens 56: 7009–7021. https://doi.org/10.1109/TGRS.2018.2847026. [CrossRef] [Google Scholar]
- O’Brien TP, Moldwin M. 2003. Empirical plasmapause models from magnetic indices. Geophys Res Lett 30: 1152. https://doi.org/10.1029/2002GL016007. [Google Scholar]
- Olivares-Pulido G, Hernández-Pajares M, Aragón-Àngel A, Garcia-Rigo A. 2016. A linear scale height Chapman model supported by GNSS occultation measurements. J Geophys Res Space Phys 121: 7932–7940. https://doi.org/10.1002/2016JA022337. [CrossRef] [Google Scholar]
- Pierrard V, Voiculescu M. 2011. The 3D model of the plasmasphere coupled to the ionosphere. Geophys Res Lett 38: L12104. https://doi.org/10.1029/2011GL047767. [CrossRef] [Google Scholar]
- Pinto Jayawardena TS, Chartier AT, Spencer P, Mitchell CN. 2016. Imaging the topside ionosphere and plasmasphere with ionospheric tomography using COSMIC GPS TEC. J Geophys Res Space Phys 121: 817–831. https://doi.org/10.1002/2015JA021561. [CrossRef] [Google Scholar]
- Prol FS, Hernández-Pajares M, Muella MTAH, Camargo PO. 2018. Tomographic imaging of ionospheric plasma bubbles based on GNSS and radio occultation measurements. Remote Sens 10: 1529. https://doi.org/10.3390/rs10101529. [CrossRef] [Google Scholar]
- Prol FS, Camargo PO, Hernández-Pajares M, Muella MTAH. 2019. A new method for ionospheric tomography and its assessment by ionosonde electron density, GPS TEC, and single-frequency PPP. IEEE Trans Geosci Remote Sens 57: 2571–2582. https://doi.org/10.1109/TGRS.2018.2874974. [CrossRef] [Google Scholar]
- Pryse SE, Kersley L. 1992. A preliminary experimental test of ionospheric tomography. J Atmos Terr Phys 54: 1007–1012. https://doi.org/10.1016/0021-9169(92)90067-U. [CrossRef] [Google Scholar]
- Pryse SE, Kersley L, Mitchell CN, Spencer PSJ, Williams MJ. 1998. A comparison of reconstruction techniques used in ionospheric tomography. Radio Sci 33: 1767–1779. https://doi.org/10.1029/98RS01613. [CrossRef] [Google Scholar]
- Rius A, Ruffini G, Cucurull L. 1997. Improving the vertical resolution of ionospheric tomography with GPS occultations. Geophys Res Lett 24: 2291–2294. https://doi.org/10.1029/97GL52283. [CrossRef] [Google Scholar]
- Sharma S, Galav P, Dashora N, Alex S, Dabas RS, Pandey R. 2011. Response of low-latitude ionospheric total electron content to the geomagnetic storm of 24 August 2005. J Geophys Res 116: A05317. https://doi.org/10.1029/2010JA016368. [Google Scholar]
- Singh AK, Singh RP, Siingh D. 2011. State studies of Earth’s plasmasphere: A review. Planet Space Sci 59: 810–834. https://doi.org/10.1016/j.pss.2011.03.013. [CrossRef] [Google Scholar]
- Spencer PSJ, Mitchell CN. 2011. Imaging of 3-D plasmaspheric electron density using GPS to LEO satellite differential phase observations. Radio Sci 46: RS0D04. https://doi.org/10.1029/2010RS004565. [Google Scholar]
- Webb PA, Essex EA. 2000. An ionosphere-plasmasphere global electron density model. Phys Chem Earth 25: 301–306. https://doi.org/10.1016/S1464-1917(00)00021-0. [Google Scholar]
- Wen D, Liu S, Tang P. 2010. Tomographic reconstruction of ionospheric electron density based on constrained algebraic reconstruction technique. GPS Solut 14: 375–380. https://doi.org/10.1007/s10291-010-0161-0. [CrossRef] [Google Scholar]
- Wu MJ, Guo P, Xu TL, Fu NF, Xu XS, Jin HL, Hu XG. 2015. Data assimilation of plasmasphere and upper ionosphere using COSMIC/GPS slant TEC measurements. Radio Sci 50: 1131–1140. https://doi.org/10.1002/2015RS005732. [CrossRef] [Google Scholar]
- Verbanac G, Pierrard V, Bandic M, Darrouzet F, Rauch J-L, Décréau P. 2015. The relationship between plasmapause, solar wind and geomagnetic activity between 2007 and 2011. Ann Geophys 33: 1271–1283. https://doi.org/10.5194/angeo-33-1271-2015. [CrossRef] [Google Scholar]
- Yizengaw E, Moldwin MB, Galvan D, Iijima BA, Komjathy A, Mannucci AJ. 2008. Global plasmaspheric TEC and its relative contribution to GPS TEC. J Atmos Sol-Terr Phys 70: 1541–1548. https://doi.org/10.1016/j.jastp.2008.04.022. [CrossRef] [Google Scholar]
- Yue X, Schreiner WS, Hunt DC, Rocken C, Kuo Y-H. 2011. Quantitative evaluation of the low Earth orbit satellite based slant total electron content determination. Space Weather 9: S09001. https://doi.org/10.1029/2011SW000687. [Google Scholar]
- Yue X, Wang W, Lei J, Burns A, Zhang Y, Wan W, Liu L, Hu L, Zhao B, Schreiner WS. 2016. Long-lasting negative ionospheric storm effects in low and middle latitudes during the recovery phase of the 17 March 2013 geomagnetic storm. J Geophys Res Space Phys 121: 9234–9249. https://doi.org/10.1002/2016JA022984. [CrossRef] [Google Scholar]
- Zhelavskaya IS, Shprits YY, Spasojevic M. 2017. Empirical modeling of the plasmasphere dynamics using neural networks. J Geophys Res Space Phys 122: 11227–11244. https://doi.org/10.1002/2017JA024406. [CrossRef] [Google Scholar]
- Zhong J, Lei J, Dou X, Yue X. 2016. Assessment of vertical TEC mapping functions for space-based GNSS observations. GPS Solut 20: 353–362. https://doi.org/10.1007/s10291-015-0444-6. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.