Issue
J. Space Weather Space Clim.
Volume 11, 2021
Topical Issue - 10 years of JSWSC
Article Number 23
Number of page(s) 31
DOI https://doi.org/10.1051/swsc/2021001
Published online 18 March 2021
  • Akasofu SI. 1964. The development of the auroral substorm. Planet Space Sci 12 : 273–282. https://doi.org/10.1016/0032-0633(64)90151-5. [Google Scholar]
  • Araki T, Funato K, Iguchi T, Kamei T. 1993. Direct detection of solar wind dynamic pressure effect on ground geomagnetic field. Geophys Res Lett 20 : 775–778. https://doi.org/10.1029/93GL00852. [Google Scholar]
  • Barlow WH. 1849. On the spontaneous electrical currents observed in the wires of the electric telegraph. Phil Trans R Soc Lond 139 : 61–72. https://doi.org/10.1098/rstl.1849.0006. [Google Scholar]
  • Boteler DH. 2019. A 21st century view of the March 1989 magnetic storm. Space Weath 17 : 1427–1441. https://doi.org/10.1029/2019SW02278. [Google Scholar]
  • Burlaga L, Sittler E, Mariani F, Schwenn R. 1981. Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations. J Geophys Res 86 : 6673–6684. https://doi.org/10.1029/JA086iA08p06673. [Google Scholar]
  • Burlaga L, Fitzenreiter R, Lepping R, Ogilvie K, Szabo A, Lazarus A, Steinberg J, Gloeckler G, Howard R, Michels D, Farrugia C, Lin RP, Larson DE. 1998. A magnetic cloud containing prominence material: January 1997. J Geophys Res 103 : 277–285. https://doi.org/10.1029/97JA02768. [Google Scholar]
  • Campbell WH. 1980. Observation of electric currents in the Alaska oil pipeline resulting from auroral electrojet current sources. Geophys J R Astr Soc 61 : 437–449. https://doi.org/10.1111/j.1365-246X.1980.tb04325.x. [Google Scholar]
  • Carrington RC. 1859. Description of a singular appearance seen in the Sun on September 1, 1859. Mon Not R Astron Soc , XX : 13–15. [Google Scholar]
  • Chen PF. 2011. Coronal mass ejections: Models and their observational basis. Living Rev Solar Phys 8 : 1–92. http://www.livingreviews.org/lrsp-2011-1. [Google Scholar]
  • Daglis IA, Thorne RM, Baumjohann W, Orsini S. 1999. The terrestrial ring current: formation and decay. Rev Geophys 37 : 407–438. [Google Scholar]
  • Du AM, Tsurutani BT, Sun W. 2008. Anomalous geomagnetic storm of 21–22 January 2005: A storm main phase during northward IMFs. J Geophys Res 113 : A10214. https://doi.org/10.1029/2008JA013284. [Google Scholar]
  • Dungey JW. 1961. Interplanetary magnetic field and the auroral zones. Phys Rev Lett 6 : 47–50. [Google Scholar]
  • Echer E, Gonzalez WD, Tsurutani BT. 2008a. Interplanetary conditions leading to superintense geomagnetic storms (Dst ≤ -250 nT) during solar cycle 23. Geophys Res Lett 35 : L06S03. https://doi.org/10.1029/2007/GL031755. [Google Scholar]
  • Echer E, Gonzalez WD, Tsurutani BT, Gonzalez ALC. 2008b. Interplanetary conditions causing intense geomagnetic storms (Dst ≤-100 nT) during solar cycle 23 (1996–2006). J Geophys Res 113 : A05221. https://doi.org/10.1029/2007JA012744. [Google Scholar]
  • Farrugia CJ, Erkaev NV, Biernat HK, Burlaga LF, Lepping RP, Osherovich VA. 1997. Possible plasma depletion layer ahead of an interplanetary ejecta. J Geophys Res 102 : 7087–7093. https://doi.org/10.1029/96JA03822. [Google Scholar]
  • Gonzalez WD, Tsurutani BT. 1987. Criteria of interplanetary parameters causing intense magnetic storms (Dst < −100 nT). Planet Space Sci 35 : 1101–1109. https://doi.org/10.1016/0032-0633(87)90015-8. [NASA ADS] [CrossRef] [Google Scholar]
  • Gonzalez WD, Tsurutani BT, Gonzalez ALC, Smith EJ, Tang F, Akasofu SI. 1989. Solar wind-magnetosphere coupling during intense magnetic storms (978–1979). J Geophys Res 94 : 8835–8851. https://doi.org/10.1029/JA094iA07p08835. [Google Scholar]
  • Gonzalez WD, Joselyn JA, Kamide Y, Kroehl HW, Rostoker G, Tsurutani BT, Vasyliunas VM. 1994. What is a geomagnetic storm? J Geophys Res 99 : 5771–5792. https://doi.org/10.1029/93JA02867. [NASA ADS] [CrossRef] [Google Scholar]
  • Gonzalez WD, Echer E, Gonzalez ALC, Tsurutani BT. 2007. Interplanetary origin of intense geomagnetic storms (Dst ≤-100 nT) during solar cycle 23. Geophys Res Lett 34 : L06101. https://doi.org/10.1029/2006GL028879. [CrossRef] [Google Scholar]
  • Googan C. 2020. The cathodic protection potential criteria: Evaluation of the evidence. Mat Corr . https://doi.org/10.1002/maco.202011978. [Google Scholar]
  • Guarnieri FL. 2006. The nature of auroras during High-Intensity Long-Duration Continuous AE Activity (HILDCAA) events: 1998 to 2001. In: Recurrent Magnetic Storms: Corotating Solar Wind Streams , vol. 167 , Tsurutani BT, et al., (Eds.) Geophys. Mon. Ser., Amer. Geophys., Un. Press, Washington DC. pp. 235–243. https://doi.org/10.1029/167GM19 [Google Scholar]
  • Guarnieri FL, Tsurutani BT, Echer E, Gonzalez WD. 2006a. Geomagnetic activity and auroras caused by high-speed streams: A review. In: Adv Geosci , Vol. 8 , edited by Duldig et al., World Sci Publ. Co. pp. 91–102. [Google Scholar]
  • Guarnieri FL, Tsurutani BT, Gonzalez WD, Gonzalez ALC, Grande M, Soraas F, Echer E. 2006b. ICME and CIR storms with particular emphases on HILDCAA events. In: ILWS Workshop 2006 , GOA. [Google Scholar]
  • Gummow RA, Eng P. 2002. GIC effects on pipeline corrosion and corrosion control systems. J Atmos Sol-Terr Phys 64 : 1755–1764. [CrossRef] [Google Scholar]
  • Hajra R, Tsurutani BT. 2018. Interplanetary shocks inducing magnetospheric supersubstorms (SML < -2500 nT): Unusual auroral morphologies and energy flow. Astrophys J 858 : 123. https://doi.org/10.3847/1538-4357/aabaed. [Google Scholar]
  • Heppner JP. 1955. Note on the occurrence of worldwide SSCs during the onset of negative bays at College, Alaska. J Geophys Res 60 : 29–32. https://doi.org/10.1029/JZ060i001p00029. [Google Scholar]
  • Illing RME, Hundhausen AJ. 1986. Disruption of a coronal streamer by an eruptive prominence and coronal mass ejection. J Geophys Res 91 : 10951–10960. https://doi.org/10.1029/JA091iA10p10951. [Google Scholar]
  • Kennel CF, Petschek HE. 1966. Limit on stable trapped particle fluxes. J Geophys Res 71 : 1–28. https://doi.org/10.1029/JZ071i001p00001. [Google Scholar]
  • Kennel CF, Scarf FL, Coroniti FV, Russell CT, Wenzel K-P, Sanderson TR, Van Ness P, Feldman WC, Parks GK, Smith EJ, Tsurutani BT, Mozer FS, Temerin M, Anderson RR, Scudder JD, Scholer M. 1984a. Plasma and energetic particle structure upstream of a quasi-parallel interplanetary shock. J Geophys Res 89 : 5419–5435. [Google Scholar]
  • Kennel CF, Edmiston JP, Scarf FL, Coroniti FV, Russell CT, Smith EJ, Tsurutani BT, Scudder JD, Feldman WC, Anderson RR, Mozer FS, Temerin M. 1984b. Structure of the November 12, 1978, quasi-parallel interplanetary shock. J Geophys Res 89 : 5436–5452. https://doi.org/10.1029/JA089iA07p05436. [Google Scholar]
  • Kennel CF, Edmiston JP, Hada T. 1985. A quarter century of collisionless shock research. In: Collisionless Shocks in the Heliosphere: a Tutorial Review , vol. 34 , Stone RG Tsurutani BT, (Eds.) Amer. Geophys., Un. Press, Washington DC. pp. 1. https://doi.org/10.1029/GM034p0001 [Google Scholar]
  • Lepri ST, Zurbuchen TH. 2010. Direct observational evidence of filament material within interplanetary coronal mass ejections. Astrophys J Lett 723 : L22–L27. https://doi.org/10.1088/2041-8205/723/1/L22. [Google Scholar]
  • Maezawa K. 1976. Magnetospheric convection induced by the positive and negative z components of the interplanetary magnetic field: Quantitative analysis using polar cap magnetic records. J Geophys Res 81 : 2289–2303. https://doi.org/10.1029/JA081i013p02289. [Google Scholar]
  • Mannucci AJ, Tsurutani BT, Iijima BA, Komjathy A, Saito A, Gonzalez WD, Guarnieri FL, Kozyra JU, Skoug R. 2005. Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 “Halloween storms”. Geophys Res Lett 32 : L12S02. https://doi.org/10.1029/2004GL021467. [CrossRef] [Google Scholar]
  • Meng C-I, Tsurutani B, Kawasaki K, Akasofu S-I. 1973. Cross-correlation analysis of the AE index and the interplanetary magnetic field Bs component. J Geophys Res 78 : 617–628. [Google Scholar]
  • Meng X, Tsurutani BT, Mannucci AJ. 2019. The solar and interplanetary causes of superstorms (Minimum Dst ≤ -250 nT) during the space age. J Geophys Res 124 : 3926–3948. https://doi.org/10.1029/2018JA026425. [Google Scholar]
  • Pirjola R, Lehtinen M. 1985. Currents produced in the Finnish 400 kV power transmission grid and in the Finnish natural gas pipeline by geomagnetically-induced electric fields. Ann Geophys 3 : 485–491. [Google Scholar]
  • Popov BN, Lee J-W. 2018. Cathodic protection of pipelines. In: Handbook of Environmental Degradation of Materials , Elsevier. https://doi.org/10.1016/B978-0-323-52472-8.00025-3. [Google Scholar]
  • Pulkkinen A, Viljanen A, Pajunpaa K, Pirjola R. 2001. Recordings and occurrence of geomagnetically induced currents in the Finnish natural gas pipeline network. J Appl Geophys 48 : 219–231. https://doi.org/10.1016/S0926-9851(01)00108-2. [Google Scholar]
  • Pulkkinen A, Lindahl S, Viljanen A, Pirjola R. 2005. Geomagnetic storm of 29–31 October 2003: Geomagnetically induced currents and their relation to problems in the Swedish high-voltage power transmission system. Space Weath 3 : S08C03. https://doi.org/10.1029/2004SW000123. [Google Scholar]
  • Rix BC, Boteler DH. 2001. Telluric current considerations in the design for the Maritimes and Northeast pipeline. In: Paper presented at the Corrosion 2001, Houston, Texas, March 2001. [Google Scholar]
  • Smith EJ, Wolfe JH. 1976. Observations of interaction regions and corotating shocks between one and five AU: Pioneers 10 and 11. Geophys Res Lett 3 : 137–140. [Google Scholar]
  • Smith EJ, Tsurutani BT, Rosenberg RL. 1978. Observations of the interplanetary sector structure up to heliographic latitudes of 16: Pioneer 11. J Geophys Res 83 (A2): 717–724. [Google Scholar]
  • Stone RG, Tsurutani BT. 1985. Collisionless shocks in the heliosphere: A tutorial review . Am Geophys Un Mon Ser (AGU), vol 35 , Washington DC. [CrossRef] [Google Scholar]
  • Tsurutani BT, Gonzalez WD. 1987. The causes of high-intensity long-duration continuous AE activity (HILDCAAs): interplanetary Alfvén wave trains. Planet Space Sci 35 : 405–412. https://doi.org/10.1016/0032-0633(87)90097-3. [Google Scholar]
  • Tsurutani BT, Gonzalez WD. 1995. The efficiency of viscous interaction between the solar wind and the magnetosphere during intense northward IMF events. Geophys Res Lett 22 : 663–666. https://doi.org/10.1029/95GL00205. [Google Scholar]
  • Tsurutani BT, Gonzalez WD. 1997. The interplanetary causes of magnetic storms: A review. In: Magnetic Storms , vol. 98 , Tsurutani BT, Gonzalez WD, Amer. Geophys., Un. Press, Washington DC. pp. 77. https://doi.org/10.1029/GM098p0077. [CrossRef] [Google Scholar]
  • Tsurutani BT, Gonzalez WD. 2007. A new perspective on the relationship between substorms and magnetic storms. In: Adv. Geosci. , Vol. 8 , Sol. Terr. , edited by M. Duldig et al., World Sci. Publ. Co., pp. 1–21. [Google Scholar]
  • Tsurutani BT, Lakhina GS. 1997. Some basic concepts of wave-particle interactions in collisionless plasmas. Rev Geophys 35 : 491–502. [Google Scholar]
  • Tsurutani BT, Lakhina GS. 2014. An extreme coronal mass ejection and consequences for the magnetosphere and Earth. Geophys Res Lett 41 : 287–292. https://doi.org/10.1002/2013GL058825. [Google Scholar]
  • Tsurutani BT, Lin RP. 1985. Acceleration of > 47 keV ions and > 2 keV electrons by interplanetary shocks at 1 AU. J Geophys Res 90 : 1–11. [Google Scholar]
  • Tsurutani BT, Meng C-I. 1972. Interplanetary magnetic-field variations and substorm activity. J Geophys Res 77 : 2964–2970. [Google Scholar]
  • Tsurutani BT, Stone RG. 1985. Collisionless shocks in the heliosphere: Review of current research. In: Amer Geophys , Vol. 34 , Un. Press: Washington, DC. [Google Scholar]
  • Tsurutani BT, Zhou XY. 2003. Interplanetary shock triggering of substorms: WIND and POLAR. Adv Space Res 31 : 1063–1067. https://doi.org/10.1016/S0273-1177(02)00796-2. [Google Scholar]
  • Tsurutani BT, Gonzalez WD, Tang F, Akasofu SI, Smith EJ. 1988. Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979). J Geophys Res 95 : 8519–8531. https://doi.org/10.1029/JA093iA08p08519. [Google Scholar]
  • Tsurutani BT, Gonzalez WD, Tang F, Lee YT. 1992. Great magnetic storms. Geophys Res Lett 19 : 73–76. https://doi.org/10.1029/91GL02783. [Google Scholar]
  • Tsurutani BT, Kamide Y, Gonzalez WD, Arballo JK. 1997. Magnetic Storms. Amer. Geophys. Un. Press, Washington DC. pp. 98. [Google Scholar]
  • Tsurutani BT, Arballo JK, Lakhina GS, Ho CM, Ajello J, Pickett JS, Gurnett DA, Lepping RP, Peterson WK, Rostoker G, Kamide Y, Kokubun S. 1998a. The January 10, 1997 auroral hot spot, horseshoe aurora and first substorm: A CME loop? Geophys Res Lett 25 : 3047–3050. https://doi.org/10.1029/98GL01304. [Google Scholar]
  • Tsurutani BT, Lakhina GS, Ho CM, Arballo JK, Galvan C, Boonsiriseth A, Pickett JS, Gurnett DA, Peterson WK, Thorne RM. 1998b. Broadband plasma waves observed in the polar cap boundary layer: POLAR. J Geophys Res 103 : 17351–17366. https://doi.org/10.1029/97JA03063. [Google Scholar]
  • Tsurutani BT, Zhou XY, Vasyliunas VM, Haerendel G, Arballo JK, Lakhina GS. 2001a. Interplanetary shocks, magnetopause boundary layers and dayside auroras: The importance of a very small magnetospheric region. Surv. Geophys. 22 : 101–130, Kluwer Publ., Netherlands. https://doi.org/10.1023/A:1012952414384. [Google Scholar]
  • Tsurutani BT, Arballo JK, Galvan C, Zhang LD, Zhou XY. 2001b. Polar cap boundary layer waves: An auroral zone phenomenon. J Geophys Res 106 : 19035–19055. https://doi.org/10.1029/2000JA003007. [Google Scholar]
  • Tsurutani BT, Gonzalez WD, Lakhina GS, Alex S. 2003. The extreme magnetic storm of 1–2 September 1859. J Geophys Res 108 : 1268. https://doi.org/10.1029/2002JA009504. [Google Scholar]
  • Tsurutani BT, Gonzalez WD, Guarnieri F, Kamide Y, Zhou X, Arballo JK. 2004. Are high-intensity long-duration continuous AE activity (HILDCAA) events substorm expansion events? J Atmos Sol Terr Phys 66 : 167–176. https://doi.org/10.1016/j.jastp.2003.08.015. [Google Scholar]
  • Tsurutani BT, Judge DL, Guarnieri FL, Gangopadhyay P, Jones AR, Nuttall J, Zambon GA, Didkovsky L, Mannucci AJ, Iijima B, Meier RR, Immel TJ, Woods TN, Prasad S, Floyd L, Huba J, Solomon SC, Straus P, Viereck R. 2005. The October 28 2003 extreme EUV solar flare and resultant extreme ionospheric effects: Comparison to other Halloween events and the Bastille Day event. Geophys Res Lett 32 : L03S09. https://doi.org/10.1029/2004GL021475. [Google Scholar]
  • Tsurutani BT, McPherron RL, Gonzalez WD, Lu G, Sobral JHA, Gopalswamy N. 2006. Corotating solar wind streams and recurrent geomagnetic activity . Am. Geophys. , Un. Press, Washington DC. pp. 167. [Google Scholar]
  • Tsurutani BT, Lakhina GS, Verkhoglyadova OP, Gonzalez WD, Echer E, Guarnieri FL. 2011. A review of interplanetary discontinuities and their geomagnetic effects. J Atmos Sol Terr Phys 73 : 5–19. https://doi.org/10.1016/j.jastp.2010.04.001. [Google Scholar]
  • Tsurutani BT, Hajra R, Echer E, Gjerloev JW. 2015. Extremely intense (SML ≤ 22122500 nT) substorms: isolated events that are externally triggered? Ann Geophys 22 : 519–524. https://doi.org/10.5194/angeocom-33-519-2015. [Google Scholar]
  • Tsurutani BT, Lakhina GS, Hajra R. 2020. The physics of space weather/solar-terrestrial physics (STP): what we know now and what the current and future challenges are. Non Proc Geophys 27 : 75–119. https://doi.org/10.5194/npg-27-75-2020. [Google Scholar]
  • Viljanen A, Pulkkinen A, Pirjola R, Pajunpaa K, Posio P, Koistinen A. 2006. Recordings of geomagnetically induced currents and a nowcasting service of the Finnish natural gas pipeline system. Space Weath 4 : S10004. https://doi.org/10.1029/2006SW000234. [Google Scholar]
  • Viljanen A, Koistinen A, Pajunpää K, Pirjola R, Posio P, Pulkkinen A. 2010. Recordings of geomagnetically induced currents in the finnish natural gas pipeline – Summary of an 11-year Period. Geophysica 46 : 59–67. [Google Scholar]
  • Williams DJ. 1985. Dynamics of the Earth’s ring current: theory and observation. Space Sci Rev 42 : 375–396. https://doi.org/10.1007/BF00214994. [Google Scholar]
  • Zhang J, Richardson IG, Webb DF, Gopalswamy N, Huttunen E, Kasper JC, Nitta NV, Poomvises W, Thompson BJ, Wu CC, Yahiro S, Zhukov AN. 2007. Solar and interplanetary sources of major geomagnetic storms (Dst ≤ -100 nT) during 1996–2005. J Geophys Res 112 : A10102. https://doi.org/10.1029/2007JA012321. [Google Scholar]
  • Zhou X, Tsurutani BT. 1999. Rapid intensification and propagation of the dayside aurora: Large scale interplanetary pressure pulses (fast shocks). Geophys Res Lett 26 : 1097–1100. https://doi.org/10.1029/1999GL900173. [Google Scholar]
  • Zhou X, Tsurutani BT. 2001. Interplanetary shock triggering of nightside geomagnetic activity: Substorms, pseudobreakups, and quiescent events. J Geophys Res 116 : 18957–18967. https://doi.org/10.1029/2000JA003028. [Google Scholar]
  • Zhou X, Tsurutani BT. 2004. Dawn and dusk auroras caused by gradual solar wind ram pressure events. J Atmos Sol Terr Phys 66 : 153–160. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.