Open Access
Issue |
J. Space Weather Space Clim.
Volume 11, 2021
Topical Issue - Geomagnetic Storms and Substorms: a Geomagnetically Induced Current perspective
|
|
---|---|---|
Article Number | 33 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/swsc/2021014 | |
Published online | 27 April 2021 |
- Adebesin BO, Pulkkinen A, Ngwira CM. 2016. The interplanetary and magnetospheric causes of extreme db/dt at equatorial locations. Geophys Res Lett 43 : 11501–11509. https://doi.org/10.1002/2016GL071526. [CrossRef] [Google Scholar]
- Birkeland K. 1908. Norwegian aurora polaris expedition, 1902–3 part 1 , H. Aschehoug and Company, Christiania. [Google Scholar]
- Bolduc L, Langlois P, Boteler D, Pirjola R. 1998. A study of geoelectromagnetic disturbances in Quebec, 1. General results. IEEE Trans Power Deliv 13 : 1251–1256. [CrossRef] [Google Scholar]
- Borovsky JE, Nemzek RJS. 1994. Substorm statistics: Occurrences and amplitudes , United States. https://www.osti.gov/servlets/purl/10149746ac. [Google Scholar]
- Borovsky JE, Yakymenko K. 2017. Substorm occurrence rates, substorm recurrence times, and solar wind structure. J Geophys Res: Space Phys 122 : 2973–2998. https://doi.org/10.1002/2016JA023625. [CrossRef] [Google Scholar]
- Carter BA, Yizengaw E, Pradipta R, Halford AJ, Norman R, Zhang K. 2015. Interplanetary shocks and the resulting geomagnetically induced currents at the equator. Geophys Res Lett 42 : 6554–6559. https://doi.org/10.1002/2015GL065060. [CrossRef] [Google Scholar]
- Clilverd MA, Rodger CJ, Brundell JB, Dalzell M, Martin I, et al. 2018. Long-lasting geomagnetically induced currents and harmonic distortion observed in New Zealand during the 7–8 September 2017 disturbed period. Space Weather 16 : 704–717. https://doi.org/10.029/2018SW001822. [CrossRef] [Google Scholar]
- Clilverd MA, Rodger CJ, Brundell JB, Dalzell M, Martin I, et al. 2020. Geomagnetically induced currents and harmonic distortion: high time resolution case studies. Space Weather 18 : e2020SW002594.https://doi.org/10.029/2020SW002594. [CrossRef] [Google Scholar]
- Cummings WD, Dessler AJ. 1967. Field-aligned currents in the magnetosphere. J Geophys Res 72 : 1007. [CrossRef] [Google Scholar]
- Dimmock A, Rosenqvist L, Hall J, Viljanen A, Yordanova E, Honkonen I, Sjöberg E. 2019. The GIC and geomagnetic response over Fennoscandia to the 7–8 September 2017 geomagnetic storm. Space Weather 17 : 989–1010. https://doi.org/10.1029/2018SW002132. [Google Scholar]
- Dimmock AP, Rosenqvist L, Welling DT, Viljanen A, Honkonen I, Boynton RJ, Yordanova E. 2020. On the regional variability of dB/dt and its significance to GIC. Space Weather 18 : e2020SW002497. https://doi.org/10.1029/2020SW002497. [CrossRef] [Google Scholar]
- Dungey JW. 1961. Interplanetary magnetic field and the auroral zones. Phys Rev Lett 6 ( 2 ) : 47–48. https://doi.org/10.1103/PhysRevLett.6.47. [Google Scholar]
- Fiori RAD, Boteler DH, Gillies DM. 2014. Assessment of GIC risk due to geomagnetic sudden commencements and identification of the current systems responsible. Space Weather 12 : 76–91. https://doi.org/10.1002/2013SW000967. [CrossRef] [Google Scholar]
- Forsyth C, Rae IJ, Coxon JC, Freeman MP, Jackman CM, Gjerloev J, Fazakerley A. 2015. A new technique for determining substorm onsets and phases from indices of the electrojet (SOPHIE). J Geophys Res 120 : 10,592–10606. https://doi.org/10.1002/2015JA021343. [CrossRef] [Google Scholar]
- Freeman MP, Morley SK. 2004. A minimal substorm model that explains the observed statistical distribution of times between substorms. Geophys Res Lett 31 : L12807. https://doi.org/10.1029/2004GL019989. [CrossRef] [Google Scholar]
- Freeman MP, Forsyth C, Rae IJ. 2019. The influence of substorms on extreme rates of change of the surface horizontal magnetic field in the United Kingdom. Space Weather 17 ( 6 ) : 827–844. https://doi.org/10.1029/2018sw002148. [CrossRef] [Google Scholar]
- Gjerloev JW. 2012. The SuperMAG data processing technique. J Geophys Res 117 : A09213. https://doi.org/10.1029/2012JA017683. [CrossRef] [Google Scholar]
- Hapgood M, Knipp DJ. 2016. Data citation and availability: Striking a balance between the ideal and the practical. Space Weather 14 : 919–920. https://doi.org/10.1002/2016SW001553. [CrossRef] [Google Scholar]
- Ingham M, Rodger CJ. 2018. Telluric field variations as drivers of variations in cathodic protection on a natural gas pipeline in New Zealand. Space Weather 16 : 1396–1409. https://doi.org/10.1029/2018SW001985. [CrossRef] [Google Scholar]
- Juusola L, Viljanen A, van de Kamp M, Tanskanen EI, Vanhamäki H, Partamies N, Kauristie K. 2015. High-latitude ionospheric equivalent currents during strong space storms: Regional perspective. Space Weather 13 : 49–60. https://doi.org/10.1002/2014SW001139. [CrossRef] [Google Scholar]
- Kalmoni NME, Rae IJ, Watt CEJ, Murphy KR, Samara M, et al. 2018. A diagnosis of the plasma waves responsible for the explosive energy release of substorm onset. Nat Commun 9 ( 1 ) : 4806. https://doi.org/10.1038/s41467-018-07086-0. [CrossRef] [Google Scholar]
- Kamide Y, Kokubun S. 1996. Two-component auroral electrojet: Importance for substorm studies. J Geophys Res 101 : A6. https://doi.org/10.1029/96JA00142. [Google Scholar]
- Kappenman JG. 2003. Storm sudden commencement events and the associated geomagnetically induced current risks to ground‐based systems at low‐latitude and midlatitude locations. Space Weather 1 ( 3 ) : 1016. https://doi.org/10.1029/2003SW000009. [Google Scholar]
- Kappenman JG. 2004. Effects of space weather on technology infrastructure. In: Space weather and the vulnerability of electric power grids , Daglis IA (Ed.), Kluwer Academic Publishers, Printed in the Netherlands, NATO Science Series, pp. 257–299. ISBN 1-4020-2747-8. [Google Scholar]
- Mac Manus DH, Rodger CJ, Dalzell M, Thomson AWP, Clilverd MA, et al. 2017. Long term geomagnetically induced current observations in New Zealand: Earth return corrections and geomagnetic field driver. Space Weather 15 : 1020–1038. https://doi.org/10.1029/2017SW001635. [CrossRef] [Google Scholar]
- Mäkinen T. 1993. Geomagnetically induced currents in the Finnish power transmission system. Finn Meteorol Inst Geophys Publ 32 : 101, Finn. Meteorol. Inst., Helsinki. [Google Scholar]
- Marin J, Pilipenko V, Kozyreva O, Stepanova M, Engebretson M, Vega P, Zesta E. 2014. Global Pc5 pulsations during strong magnetic storms: Excitation mechanisms and equatorward expansion. Ann Geophys 32 ( 4 ) : 319–331. https://doi.org/10.5194/angeo-32-319-2014. [CrossRef] [Google Scholar]
- Marshall RA, Dalzell M, Waters CL, Goldthorpe P, Smith EA. 2012. Geomagnetically induced currents in the New Zealand power network. Space Weather 10 : S08003. https://doi.org/10.1029/2012SW000806. [CrossRef] [Google Scholar]
- Mathie RA, Mann IR. 2001. On the solar wind control of Pc5 ULF pulsation power at mid-latitudes – Implications for MeV electron acceleration in the outer radiation belt. J Geophys Res 106 ( A12 ) : 29783–29796. https://doi.org/10.1029/2001JA000002. [CrossRef] [Google Scholar]
- Molinski TS. 2002. Why utilities respect geomagnetically induced currents. J Atmos Sol-Terr Phys 64 ( 16 ) : 1765–1778. https://doi.org/10.1016/S1364-6826(02)00126-8. [CrossRef] [Google Scholar]
- Moretto T, Friis-Christensen E, Luhr H, Zesta E. 1997. Global perspective of ionospheric traveling convection vortices: Case studies of two Geospace Environmental Modeling events. J Geophys Res 102 ( A6 ) : 11597–11610. https://doi.org/10.1029/97JA00324. [CrossRef] [Google Scholar]
- Newell PT, Gjerloev JW. 2011. Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. J Geophys Res 116 : A12211. https://doi.org/10.1029/2011JA016779. [Google Scholar]
- Nikitina L, Trichtchenko L, Boteler DH. 2016. Assessment of extreme values in geomagnetic and geoelectric field variations for Canada. Space Weather 14 : 481–494. https://doi.org/10.1002/2016SW001386. [CrossRef] [Google Scholar]
- Perreault P, Akasofu S-I. 1978. A study of geomagnetic storms. Geophys J R Astron Soc 54 : 547–573. [NASA ADS] [CrossRef] [Google Scholar]
- Østgaard N, Germany G, Stadsnes J, Vondrak RR. 2002. Energy analysis of substorms based on remote sensing techniques, solar wind measurements, and geomagnetic indices. J Geophys Res 107 ( A9 ) : 1233. https://doi.org/10.1029/2001JA002002. [CrossRef] [Google Scholar]
- Oughton EJ, Skelton A, Horne RB, Thomson AWP, Gaunt CT. 2017. Quantifying the daily economic impact of extreme space weather due to failure in electricity transmission infrastructure. Space Weather 15 : 65–83. https://doi.org/10.1002/2016SW001491. [CrossRef] [Google Scholar]
- Rodger CJ, Mac Manus DH, Dalzell M, Thomson AWP, Clarke E, et al. 2017. Long-term geomagnetically induced current observations from New Zealand: Peak current estimates for extreme geomagnetic storms. Space Weather 15 : 1447–1460. https://doi.org/10.1002/2017SW001691. [CrossRef] [Google Scholar]
- Rodger CJ, Clilverd MA, Mac Manus DH, Martin I, Dalzell M, et al. 2020. Geomagnetically induced currents and harmonic distortion: Storm-time observations from New Zealand. Space Weather 18 : e2019SW002387. https://doi.org/10.1029/2019SW002387. [CrossRef] [Google Scholar]
- Shore RM, Freeman MP, Gjerloev JW. 2018. An empirical orthogonal function reanalysis of the northern polar external and induced magnetic field during solar cycle 23. J Geophys Res: Space Phys 123 : 781–795. https://doi.org/10.1002/2017JA024420. [CrossRef] [Google Scholar]
- Shore RM, Freeman MP, Wild JA, Gjerloev JW. 2017. A high-resolution model of the external and induced magnetic field at the Earth’s surface in the Northern Hemisphere. J Geophys Res: Space Phys 122 : 2440–2454. https://doi.org/10.1002/2016JA023682. [CrossRef] [Google Scholar]
- Tanskanen E, Pulkkinen TI, Koskinen HEJ, Slavin JA. 2002. Substorm energy budget during low and high solar activity: 1997 and 1999 compared. J Geophys Res 107 ( A6 ) : 1086. https://doi.org/10.1029/2001JA900153. [CrossRef] [Google Scholar]
- Tenfjord P, Østgaard N, Strangeway R, Haaland S, Snekvik K, Laundal KM, Reistad JP, Milan SE. 2017. Magnetospheric response and reconfiguration times following IMF By reversals. J Geophys Res: Space Phys 122 : 417–431. https://doi.org/10.1002/2016JA023018. [CrossRef] [Google Scholar]
- Thomson AWP, Dawson EB, Reay SJ. 2011. Quantifying extreme behavior in geomagnetic activity. Space Weather 9 : S10001. https://doi.org/10.1029/2011SW000696. [Google Scholar]
- Turnbull KL, Wild JA, Honary F, Thomson AWP, McKay AJ. 2009. Characteristics of variations in the ground magnetic field during substorms at mid latitudes. Ann Geophys 27 ( 9 ) : 3421–3428. https://doi.org/10.5194/angeo-27-3421-2009. [CrossRef] [Google Scholar]
- Viljanen A. 1998. Relation of geomagnetically induced currents and local geomagnetic variations. IEEE Trans Power Deliv 13 : 1285–1290. [Google Scholar]
- Viljanen A, Amm O, Pirjola R. 1999. Modeling geomagnetically induced currents during different ionospheric situations. J Geophys Res 104 ( A12 ) : 28059–28071. https://doi.org/10.1029/1999JA900337. [Google Scholar]
- Viljanen A, Nevanlinna H, Pajunpää K, Pulkkinen A. 2001. Time derivative of the horizontal geomagnetic field as an activity indicator. Ann Geophys 19 : 1107–1118. [CrossRef] [Google Scholar]
- Viljanen A, Tanskanen EI, Pulkkinen A. 2006. Relation between substorm characteristics and rapid temporal variations of the ground magnetic field. Ann Geophys 24 ( 2 ) : 725–733. https://doi.org/10.5194/angeo-24-725-2006. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.