Open Access
Issue |
J. Space Weather Space Clim.
Volume 11, 2021
Topical Issue - 10 years of JSWSC
|
|
---|---|---|
Article Number | 34 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/swsc/2021012 | |
Published online | 24 May 2021 |
- Ala-Lahti M, Ruohotie J, Good S, Kilpua EKJ, Lugaz N. 2020. Spatial coherence of interplanetary coronal mass ejection sheaths at 1 AU. J Geophys Res (Space Phys) 125(9). https://doi.org/10.1029/2020JA028002. [Google Scholar]
- Attrill GDR, Harra LK, van Driel-Gesztelyi L, Démoulin P. 2007. Coronal “Wave”: Magnetic Footprint of a Coronal Mass Ejection? Astrophys J 656 : L101–L104. https://doi.org/10.1086/512854. [CrossRef] [Google Scholar]
- Aurass H, Vršnak B, Hofmann A, Rudžjak V. 1999. Flares in sigmoidal coronal structures a case study. Sol Phys 190 : 267–293. https://doi.org/10.1023/A:1005261709955. [NASA ADS] [CrossRef] [Google Scholar]
- Baker DN, Li X, Pulkkinen A, Ngwira CM, Mays ML, Galvin AB, Simunac KDC. 2013. A major solar eruptive event in July 2012: Defining extreme space weather scenarios. Space Weather 11(10): 585–591. https://doi.org/10.1002/swe.20097. [NASA ADS] [CrossRef] [Google Scholar]
- Barnard LA, de Koning CA, Scott CJ, Owens MJ, Wilkinson J, Davies JA. 2017. Testing the current paradigm for space weather prediction with heliospheric imagers. Space Weather 15(6): 782–803. https://doi.org/10.1002/2017SW001609. [CrossRef] [Google Scholar]
- Bein BM, Berkebile-Stoiser S, Veronig AM, Temmer M, Muhr N, Kienreich I, Utz D, Vršnak B. 2011. Impulsive acceleration of coronal mass ejections. I. Statistics and Coronal Mass Ejection Source Region Characteristics. Astrophys J 738 : 191. https://doi.org/10.1088/0004-637X/738/2/191. [NASA ADS] [CrossRef] [Google Scholar]
- Bein BM, Berkebile-Stoiser S, Veronig AM, Temmer M, Vršnak B. 2012. Impulsive acceleration of coronal mass ejections. II. Relation to soft X-ray flares and filament eruptions. Astrophys J 755 : 44. https://doi.org/10.1088/0004-637X/755/1/44. [CrossRef] [Google Scholar]
- Bein BM, Temmer M, Vourlidas A, Veronig AM, Utz D. 2013. The height evolution of the “True” Coronal Mass Ejection Mass derived from STEREO COR1 and COR2 Observations. Astrophys J 768(1): 31. https://doi.org/10.1088/0004-637X/768/1/31. [NASA ADS] [CrossRef] [Google Scholar]
- Bemporad A, Poletto G, Suess ST, Ko Y-K, Schwadron NA, Elliott HA, Raymond JC. 2006. Current sheet evolution in the aftermath of a CME event. Astrophys J 638 : 1110–1128. https://doi.org/10.1086/497529. [NASA ADS] [CrossRef] [Google Scholar]
- Berkebile-Stoiser S, Veronig AM, Bein BM, Temmer M. 2012. Relation between the coronal mass ejection acceleration and the non-thermal flare characteristics. Astrophys J 753(1): 88. https://doi.org/10.1088/0004-637X/753/1/88. [NASA ADS] [CrossRef] [Google Scholar]
- Brueckner GE, Delaboudiniere J-P, Howard RA, Paswaters SE, St. Cyr OC, Schwenn R, Lamy P, Simnett GM, Thompson B, Wang D. 1998. Geomagnetic storms caused by coronal mass ejections (CMEs): March 1996 through June 1997. Geophys Res Lett 25 : 3019–3022. https://doi.org/10.1029/98GL00704. [NASA ADS] [CrossRef] [Google Scholar]
- Cargill PJ. 2004. On the aerodynamic drag force acting on interplanetary coronal mass ejections. Sol Phys 221 : 135–149. https://doi.org/10.1023/B:SOLA.0000033366.10725.a2. [CrossRef] [Google Scholar]
- Cargill PJ, Chen J, Spicer DS, Zalesak ST. 1994. The deformation of flux tubes in the solar wind with applications to the structure of magnetic clouds and CMEs. In: Solar Dynamic Phenomena and Solar Wind Consequences, the Third SOHO Workshop. Hunt JJ (Ed.), vol. 373 of ESA Special Publication, pp. 291. [Google Scholar]
- Cargill PJ, Chen J, Spicer DS, Zalesak ST. 1996. Magnetohydrodynamic simulations of the motion of magnetic flux tubes through a magnetized plasma. J Geophys Res 101 : 4855–4870. https://doi.org/10.1029/95JA03769. [NASA ADS] [CrossRef] [Google Scholar]
- Cargill PJ, Schmidt J, Spicer DS, Zalesak ST. 2000. Magnetic structure of overexpanding coronal mass ejections: Numerical models. J Geophys Res 105 : 7509–7520. https://doi.org/10.1029/1999JA900479. [NASA ADS] [CrossRef] [Google Scholar]
- Chen J. 1989. Effects of toroidal forces in current loops embedded in a background plasma. Astrophys J 338 : 453–470. https://doi.org/10.1086/167211. [CrossRef] [Google Scholar]
- Chen PF, Fang C, Shibata K. 2005. A full view of EIT waves. Astrophys J 622 : 1202–1210. https://doi.org/10.1086/428084. [NASA ADS] [CrossRef] [Google Scholar]
- Cliver EW, Dietrich WF. 2013. The 1859 space weather event revisited: limits of extreme activity. J Space Weather Space Clim 3 : A31. https://doi.org/10.1051/swsc/2013053. [Google Scholar]
- Colaninno RC, Vourlidas A. 2009. First determination of the true mass of coronal mass ejections: A novel approach to using the two STEREO viewpoints. Astrophys J 698(1): 852–858. https://doi.org/10.1088/0004-637X/698/1/852. [NASA ADS] [CrossRef] [Google Scholar]
- Čalogović J, Dumbović M, Sudar D, Vršnak B, Martinić K, Temmer M, Veronig A. 2021. Probabilistic Drag-Based Ensemble Model (DBEM) evaluation for heliospheric propagation of CMEs. Solar Phys. submitted. [Google Scholar]
- de Koning CA. 2017. Lessons learned from the three-view determination of CME Mass. Astrophys J 844(1): 61. https://doi.org/10.3847/1538-4357/aa7a09. [NASA ADS] [CrossRef] [Google Scholar]
- Delannée C. 2000. Another view of the EIT wave phenomenon. Astrophys J 545(1): 512–523. https://doi.org/10.1086/317777. [NASA ADS] [CrossRef] [Google Scholar]
- Dulk GA, Leblanc Y, Bougeret J-L. 1999. Type II shock and CME from the corona to 1 AU. Geophys Res Lett 26(15): 2331–2334. https://doi.org/10.1029/1999GL900454. [CrossRef] [Google Scholar]
- Dumbović M, Devos A, Vršnak B, Sudar D, Rodriguez L, Ruždjak D, Leer K, Vennerstrøm S, Veronig A. 2015. Geoeffectiveness of coronal mass ejections in the SOHO Era. Sol Phys 290(2): 579–612. https://doi.org/10.1007/s11207-014-0613-8. [NASA ADS] [CrossRef] [Google Scholar]
- Dumbović M, Čalogović J, Vršnak B, Temmer M, Mays ML, Veronig A, Piantschitsch I. 2018. The Drag-based Ensemble Model (DBEM) for Coronal Mass Ejection Propagation. Astrophys J 854(2): 180. https://doi.org/10.3847/1538-4357/aaaa66. [NASA ADS] [CrossRef] [Google Scholar]
- Dumbović M, Vršnak B, Čalogović J. 2016. Forbush decrease prediction based on remote solar observations. Sol Phys 291(1): 285–302. https://doi.org/10.1007/s11207-015-0819-4. [CrossRef] [Google Scholar]
- Dumbović M, Vršnak B, Čalogović J, Župan R. 2012. Cosmic ray modulation by different types of solar wind disturbances. Astron Astrophys 538 : A28. https://doi.org/10.1051/0004-6361/201117710. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Engvold O. 1988. Prominence Environment. In: Dynamics and Structure of Quiescent Solar Prominences. Astrophysics and Space Science Library, vol 150 , Priest ER (Ed.), Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3077-3_3. [Google Scholar]
- Falkenberg TV, Vennerstrom S, Brain DA, Delory G, Taktakishvili A. 2011. Multipoint observations of coronal mass ejection and solar energetic particle events on Mars and Earth during November 2001. J Geophys Res 116 : A06104. https://doi.org/10.1029/2010JA016279. [Google Scholar]
- Farrugia C, Berdichevsky D. 2004. Evolutionary signatures in complex ejecta and their driven shocks. Ann Geophys 22(10): 3679–3698. https://doi.org/10.5194/angeo-22-3679-2004. [CrossRef] [Google Scholar]
- Feng L, Wang Y, Shen F, Shen C, Inhester B, Lu L, Gan W. 2015. Why does the apparent mass of a coronal mass ejection increase? Astrophys J 812(1): 70. https://doi.org/10.1088/0004-637X/812/1/70. [NASA ADS] [CrossRef] [Google Scholar]
- Feynman J, Gabriel SB. 2000. On space weather consequences and predictions. J Geophys Res 105(A5): 10543–10564. https://doi.org/10.1029/1999JA000141. [NASA ADS] [CrossRef] [Google Scholar]
- Garren DA, Chen J. 1994. Lorentz self-forces on curved current loops. Phys Plasmas 1 : 3425–3436. https://doi.org/10.1063/1.870491. [CrossRef] [Google Scholar]
- Gibson SE, Fan Y, Török T, Kliem B. 2006. The evolving sigmoid: Evidence for magnetic flux ropes in the corona before, during, and after CMES. Space Sci Rev 124 : 131–144. https://doi.org/10.1007/s11214-006-9101-2. [NASA ADS] [CrossRef] [Google Scholar]
- Gopalswamy N. 2006. Properties of Interplanetary Coronal Mass Ejections. Space Sci Rev 124 : 145–168. https://doi.org/10.1007/s11214-006-9102-1. [NASA ADS] [CrossRef] [Google Scholar]
- Gopalswamy N, Lara A, Lepping RP, Kaiser ML, Berdichevsky D, St. Cyr OC. 2000. Interplanetary acceleration of coronal mass ejections. Geophys Res Lett 27 : 145–148. [CrossRef] [Google Scholar]
- Gopalswamy N, Lara A, Yashiro S, Kaiser ML, Howard RA. 2001. Predicting the 1-AU arrival times of coronal mass ejections. J Geophys Res 106 : 29207–29218. https://doi.org/10.1029/2001JA000177. [CrossRef] [Google Scholar]
- Gopalswamy N, Mäkelä P, Xie H, Akiyama S, Yashiro S. 2009. CME interactions with coronal holes and their interplanetary consequences. J Geophys Res 114 , A3. https://doi.org/10.1029/2008JA013686. [Google Scholar]
- Gopalswamy N, Yashiro S, Liu Y, Michalek G, Vourlidas A, Kaiser ML, Howard RA. 2005. Coronal mass ejections and other extreme characteristics of the 2003 October-November solar eruptions. J Geophys Res 110 : 9. https://doi.org/10.1029/2004JA010958. [Google Scholar]
- Green LM, Török T, Vršnak B, Manchester W, Veronig A. 2018. The Origin, Early Evolution and Predictability of Solar Eruptions. Space Sci Rev 214 : 46. https://doi.org/10.1007/s11214-017-0462-5. [NASA ADS] [CrossRef] [Google Scholar]
- Gulisano AM, Démoulin P, Dasso S, Ruiz ME, Marsch E. 2010. Global and local expansion of magnetic clouds in the inner heliosphere. Astron Astrophys 509 : A39. https://doi.org/10.1051/0004-6361/200912375. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Hood A, Anzer U. 1987. The stability of line tied force-free cylindrical arcades: Is an active region filament a requirement for a two-ribbon flare? Sol Phys 111(2): 333–346. https://doi.org/10.1007/BF00148524. [CrossRef] [Google Scholar]
- Kay C, Gopalswamy N. 2018. The Effects of Uncertainty in Initial CME Input Parameters on Deflection, Rotation, Bz, and Arrival Time Predictions. J Geophys Res (Space Phys) 123(9): 7220–7240. https://doi.org/10.1029/2018JA025780. [CrossRef] [Google Scholar]
- Kay C, Mays ML, Verbeke C. 2020. Identifying Critical Input Parameters for Improving Drag-Based CME Arrival Time Predictions. Space Weather 18(1): e02382. https://doi.org/10.1029/2019SW002382. [Google Scholar]
- Kienreich IW, Temmer M, Veronig AM. 2009. STEREO quadrature observations of the three-dimensional structure and driver of a global coronal wave. Astrophys J Lett 703(2): L118–L122. https://doi.org/10.1088/0004-637X/703/2/L118. [NASA ADS] [CrossRef] [Google Scholar]
- Kilpua EKJ, Balogh A, von Steiger R, Liu YD. 2017. Geoeffective Properties of Solar Transients and Stream Interaction Regions. Space Sci Rev 212(3–4): 1271–1314. https://doi.org/10.1007/s11214-017-0411-3. [Google Scholar]
- Knipp DJ, Tobiska WK, Emery BA. 2004. Direct and indirect thermospheric heating sources for solar cycles 21–23. Sol Phys 224(1–2): 495–505. https://doi.org/10.1007/s11207-005-6393-4. [Google Scholar]
- Ko Y-K, Raymond JC, Lin J, Lawrence G, Li J, Fludra A. 2003. Dynamical and physical properties of a post-coronal mass ejection current sheet. Astrophys J 594 : 1068–1084. https://doi.org/10.1086/376982. [Google Scholar]
- Koskinen HEJ, Baker DN, Balogh A, Gombosi T, Veronig A, von Steiger R. 2017. Achievements and challenges in the science of space weather. Space Sci Rev 212(3–4): 1137–1157. https://doi.org/10.1007/s11214-017-0390-4. [Google Scholar]
- Kozarev KA, Korreck KE, Lobzin VV, Weber MA, Schwadron NA. 2011. Off-limb Solar Coronal Wavefronts from SDO/AIA Extreme-ultraviolet Observations – Implications for Particle Production. Astrophys J Lett 733(2): L25. https://doi.org/10.1088/2041-8205/733/2/L25. [CrossRef] [Google Scholar]
- Krauss S, Temmer M, Veronig A, Baur O, Lammer H. 2015. Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results. J Geophys Res (Space Phys) 120(10): 8848–8860. https://doi.org/10.1002/2015JA021702. [CrossRef] [Google Scholar]
- Liu YD, Luhmann JG, Kajdič P, Kilpua EKJ, Lugaz N, et al. 2014. Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections. Nature Commun 5 : 3481. https://doi.org/10.1038/ncomms4481. [CrossRef] [Google Scholar]
- Long DM, Bloomfield DS, Chen PF, Downs C, Gallagher PT, et al. 2017. Understanding the physical nature of coronal “EIT Waves”. Sol Phys 292(1): 7. https://doi.org/10.1007/s11207-016-1030-y. [NASA ADS] [CrossRef] [Google Scholar]
- Lugaz N, Temmer M, Wang Y, Farrugia CJ. 2017. The interaction of successive coronal mass ejections: A review. Sol Phys 292(4): 64. https://doi.org/10.1007/s11207-017-1091-6. [NASA ADS] [CrossRef] [Google Scholar]
- Lulić S, Vršnak B, Žic T, Kienreich IW, Muhr N, Temmer M, Veronig AM. 2013. Formation of coronal shock waves. Sol Phys 286(2): 509–528. https://doi.org/10.1007/s11207-013-0287-7. [NASA ADS] [CrossRef] [Google Scholar]
- Manchester W, Kilpua EKJ, Liu YD, Lugaz N, Riley P, Török T, Vršnak B. 2017. The physical processes of CME/ICME evolution. Space Sci Rev 212(3–4): 1159–1219. https://doi.org/10.1007/s11214-017-0394-0. [NASA ADS] [CrossRef] [Google Scholar]
- Maričić D, Vršnak B, Dumbović M, Žic T, Roša D, et al. 2014. Kinematics of interacting ICMEs and related forbush decrease: Case study. Sol Phys 289 : 351–368. https://doi.org/10.1007/s11207-013-0314-8. [CrossRef] [Google Scholar]
- Maričić D, Vršnak B, Stanger AL, Veronig AM, Temmer M, Roša D. 2007. Acceleration phase of coronal mass ejections: II. Synchronization of the energy release in the associated flare. Sol Phys 241 : 99–112. https://doi.org/10.1007/s11207-007-0291-x. [NASA ADS] [CrossRef] [Google Scholar]
- Mays ML, Taktakishvili A, Pulkkinen A, MacNeice PJ, Rastätter L, et al. 2015. Ensemble modeling of CMEs Using the WSA-ENLIL+Cone Model. Sol Phys 290(6): 1775–1814. https://doi.org/10.1007/s11207-015-0692-1. [NASA ADS] [CrossRef] [Google Scholar]
- Miklenic CH, Veronig AM, Vršnak B. 2009. Temporal comparison of nonthermal flare emission and magnetic-flux change rates. Astron Astrophys 499 : 893–904. https://doi.org/10.1051/0004-6361/200810947. [CrossRef] [EDP Sciences] [Google Scholar]
- Miklenic CH, Veronig AM, Vršnak B, Hanslmeier A. 2007. Reconnection and energy release rates in a two-ribbon flare. Astron Astrophys 461 : 697–706. https://doi.org/10.1051/0004-6361:20065751. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Moreton GE, Ramsey HE. 1960. Recent observations of dynamical phenomena associated with solar flares. Publ Astron Soc Pac 72 : 357. [NASA ADS] [CrossRef] [Google Scholar]
- Moriña D, Serra I, Puig P, Corral Á. 2019. Probability estimation of a Carrington-like geomagnetic storm. Scientific Rep. 9 : 2393. https://doi.org/10.1038/s41598-019-38918-8. [CrossRef] [Google Scholar]
- Möstl C, Rollett T, Frahm RA, Liu YD, Long DM, et al. 2015. Strong coronal channelling and interplanetary evolution of a solar storm up to Earth and Mars. Nature Commun 6 : 7135. https://doi.org/10.1038/ncomms8135. [CrossRef] [Google Scholar]
- Muhr N, Vršnak B, Temmer M, Veronig AM, Magdalenić J. 2010. Analysis of a global moreton wave observed on 2003 October 28. Astrophys J 708(2): 1639–1649. https://doi.org/10.1088/0004-637X/708/2/1639. [NASA ADS] [CrossRef] [Google Scholar]
- Murray SA, Guerra JA, Zucca P, Park S-H, Carley EP, Gallagher PT, Vilmer N, Bothmer V. 2018. Connecting coronal mass ejections to their solar active region sources: combining results from the HELCATS and FLARECAST projects. Sol Phys 293(4): 60. https://doi.org/10.1007/s11207-018-1287-4. [NASA ADS] [CrossRef] [Google Scholar]
- Nindos A, Patsourakos S, Vourlidas A, Cheng X, Zhang J. 2020. When do solar erupting hot magnetic flux ropes form? Astron Astrophys 642 : A109. https://doi.org/10.1051/0004-6361/202038832. [CrossRef] [EDP Sciences] [Google Scholar]
- Odstrčil D, Pizzo VJ. 1999. Distortion of the interplanetary magnetic field by three-dimensional propagation of coronal mass ejections in a structured solar wind. J Geophys Res 104 : 28225–28240. https://doi.org/10.1029/1999JA900319. [NASA ADS] [CrossRef] [Google Scholar]
- Ouyang Y, Zhou YH, Chen PF, Fang C. 2017. Chirality and magnetic configurations of solar filaments. Astrophys J 835(1): 94. https://doi.org/10.3847/1538-4357/835/1/94. [CrossRef] [Google Scholar]
- Owens MJ, Lockwood M, Barnard LA. 2017. Coronal mass ejections are not coherent magnetohydrodynamic structures. Scientific Rep 7 : 4152. https://doi.org/10.1038/s41598-017-04546-3. [CrossRef] [Google Scholar]
- Owens MJ, Merkin VG, Riley P. 2006. A kinematically distorted flux rope model for magnetic clouds. J Geophys Res (Space Phys) 111 : A03104. https://doi.org/10.1029/2005JA011460. [Google Scholar]
- Parnell CE, De Moortel I. 2012. A contemporary view of coronal heating. Philos Trans R Soc London Ser A 370(1970): 3217–3240. https://doi.org/10.1098/rsta.2012.0113. [Google Scholar]
- Patsourakos S, Vourlidas A. 2012. On the nature and genesis of EUV Waves: A synthesis of observations from SOHO, STEREO, SDO, and Hinode (Invited Review). Sol Phys 281(1): 187–222. https://doi.org/10.1007/s11207-012-9988-6. [Google Scholar]
- Patsourakos S, Vourlidas A, Stenborg G. 2010. The genesis of an impulsive coronal mass ejection observed at ultra-high cadence by AIA on SDO. Astrophys J Lett 724(2): L188–L193. https://doi.org/10.1088/2041-8205/724/2/L188. [NASA ADS] [CrossRef] [Google Scholar]
- Pulkkinen T. 2007. Space weather: Terrestrial perspective. Living Rev Sol Phys 4(1): 1. https://doi.org/10.12942/lrsp-2007-1. [CrossRef] [Google Scholar]
- Qiu J, Yurchyshyn VB. 2005. Magnetic reconnection flux and coronal mass ejection velocity. Astrophys J Lett 634 : L121–L124. https://doi.org/10.1086/498716. [NASA ADS] [CrossRef] [Google Scholar]
- Reiner MJ, Kaiser ML, Bougeret J-L. 2007. Coronal and interplanetary propagation of CME/shocks from radio, in situ and white-light observations. Astrophys J 663 : 1369–1385. https://doi.org/10.1086/518683. [CrossRef] [Google Scholar]
- Riley P, Baker D, Liu YD, Verronen P, Singer H, Güdel M. 2018. Extreme space weather events: from cradle to grave. Space Sci Rev 214(1): 21. https://doi.org/10.1007/s11214-017-0456-3. [NASA ADS] [CrossRef] [Google Scholar]
- Rodrguez Gómez JM, Podladchikova T, Veronig A, Ruzmaikin A, Feynman J, Petrukovich A. 2020. Clustering of fast coronal mass ejections during solar cycles 23 and 24 and the implications for CME-CME interactions. Astrophys J 899(1): 47. https://doi.org/10.3847/1538-4357/ab9e72. [CrossRef] [Google Scholar]
- Rollett T, Möstl C, Isavnin A, Davies JA, Kubicka M, Amerstorfer UV, Harrison RA. 2016. ElEvoHI: A novel CME prediction tool for heliospheric imaging combining an elliptical front with drag-based model fitting. Astrophys J 824(2): 131. https://doi.org/10.3847/0004-637X/824/2/131. [CrossRef] [Google Scholar]
- Rollett T, Möstl C, Temmer M, Frahm RA, Davies JA, et al. 2014. Combined multipoint remote and in situ observations of the asymmetric evolution of a fast solar coronal mass ejection. Astrophys J 709 : L6. https://doi.org/10.1088/2041-8205/790/1/L6. [CrossRef] [Google Scholar]
- Sandhu JK, Rae IJ, Freeman MP, Forsyth C, Gkioulidou M, Reeves GD, Spence HE, Jackman CM, Lam MM. 2018. Energization of the ring current by substorms. J Geophys Res (Space Phys) 123(10): 8131–8148. https://doi.org/10.1029/2018JA025766. [CrossRef] [Google Scholar]
- Savani NP, Owens MJ, Rouillard AP, Forsyth RJ, Davies JA. 2010. Observational evidence of a coronal mass ejection distortion directly attributable to a structured solar wind. Astrophys J Lett 714(1): L128–L132. https://doi.org/10.1088/2041-8205/714/1/L128. [NASA ADS] [CrossRef] [Google Scholar]
- Savani NP, Owens MJ, Rouillard AP, Forsyth RJ, Kusano K, Shiota D, Kataoka R, Jian L, Bothmer V. 2011. Evolution of coronal mass ejection morphology with increasing heliocentric distance. II. In Situ Observations. Astrophys J 732(2): 117. https://doi.org/10.1088/0004-637X/732/2/117. [NASA ADS] [CrossRef] [Google Scholar]
- Schmieder B, Aulanier G, Vršnak B. 2015. Flare-CME models: An Observational perspective (invited review). Sol Phys 290 : 3457–3486. https://doi.org/10.1007/s11207-015-0712-1. [NASA ADS] [CrossRef] [Google Scholar]
- Schrijver CJ, Kauristie K, Aylward AD, Denardini CM, Gibson SE, et al. 2015. Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS. Adv Space Res 55(12): 2745–2807. https://doi.org/10.1016/j.asr.2015.03.023. [NASA ADS] [CrossRef] [Google Scholar]
- Schwenn R. 2006. Space weather: The solar perspective. Living Rev Sol Phys 3(1): 2. 10.12942/lrsp-2006-2. [CrossRef] [Google Scholar]
- Shen C, Wang Y, Wang S, Liu Y, Liu R, Vourlidas A, Miao B, Ye P, Liu J, Zhou Z. 2012. Super-elastic collision of large-scale magnetized plasmoids in the heliosphere. Nature Phys 8(12): 923–928. https://doi.org/10.1038/nphys2440. [CrossRef] [Google Scholar]
- Siscoe G, Crooker NU, Clauer CR. 2006. Dst of the Carrington storm of 1859. Adv Space Res 38(2): 173–179. https://doi.org/10.1016/j.asr.2005.02.102. [CrossRef] [Google Scholar]
- Song HQ, Zhang J, Chen Y, Cheng X. 2014. Direct observations of magnetic flux rope formation during a solar coronal mass ejection. Astrophys J Lett 792(2): L40. https://doi.org/10.1088/2041-8205/792/2/L40. [Google Scholar]
- Sudar D, Vršnak B, Dumbović M. 2016. Predicting coronal mass ejections transit times to Earth with neural network. Mon Not R Astron Soc 456(2): 1542–1548. https://doi.org/10.1093/mnras/stv2782. [Google Scholar]
- Tappin SJ. 2006. The Deceleration of an Interplanetary Transient from the Sun to 5 AU. Sol Phys 233 : 233–248. https://doi.org/10.1007/s11207-006-2065-2. [Google Scholar]
- Temmer M, Rollett T, Möstl C, Veronig AM, Vršnak B, Odstrčil D. 2011. Influence of the ambient solar wind flow on the propagation behavior of interplanetary coronal mass ejections. Astrophys J 743 : 101–112. https://doi.org/10.1088/0004-637X/743/2/101. [CrossRef] [Google Scholar]
- Temmer M, Veronig AM, Kontar EP, Krucker S, Vršnak B. 2010. Combined STEREO/RHESSI study of coronal mass ejection acceleration and particle acceleration in solar flares. Astrophys J 712 : 1410–1420. https://doi.org/10.1088/0004-637X/712/2/1410. [CrossRef] [Google Scholar]
- Temmer M, Veronig AM, Peinhart V, Vršnak B. 2014. Asymmetry in the CME-CME Interaction process for the events from 2011 February 14–15. Astrophys J 785 : 85. https://doi.org/10.1088/0004-637X/785/2/85. [NASA ADS] [CrossRef] [Google Scholar]
- Temmer M, Veronig AM, Vršnak B, Rybák J., et al. 2008. Acceleration in fast halo CMEs and synchronized flare HXR bursts. Astrophys J 673 : L95–L98. https://doi.org/10.1086/527414. [NASA ADS] [CrossRef] [Google Scholar]
- Temmer M, Vršnak B, Rollett T, Bein B, de Koning CA, et al. 2012. Characteristics of kinematics of a coronal mass ejection during the 2010 August 1 CME-CME interaction event. Astrophys J 749 : 57. https://doi.org/10.1088/0004-637X/749/1/57. [NASA ADS] [CrossRef] [Google Scholar]
- Thernisien A. 2011. Implementation of the graduated cylindrical shell model for the three-dimensional reconstruction of coronal mass ejections. Astrophys J Suppl Ser 194(2): 33. https://doi.org/10.1088/0067-0049/194/2/33. [NASA ADS] [CrossRef] [Google Scholar]
- Thernisien A, Vourlidas A, Howard RA. 2009. Forward modeling of coronal mass ejections using STEREO/SECCHI data. Sol Phys 256(1–2): 111–130. https://doi.org/10.1007/s11207-009-9346-5. [CrossRef] [Google Scholar]
- Thernisien AFR, Howard RA, Vourlidas A. 2006. Modeling of flux rope coronal mass ejections. Astrophys J 652(1): 763–773. https://doi.org/10.1086/508254. [CrossRef] [Google Scholar]
- Thompson BJ, Plunkett SP, Gurman JB, Newmark JS, St. Cyr OC, Michels DJ. 1998. SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997. Geophys Res Lett 25 : 2465–2468. https://doi.org/10.1029/98GL50429. [NASA ADS] [CrossRef] [Google Scholar]
- Titov VS, Démoulin P. 1999. Basic topology of twisted magnetic configurations in solar flares. Astron Astrophys 351 : 707–720. [Google Scholar]
- Török T, Kliem B. 2005. Confined and Ejective Eruptions of Kink-unstable Flux Ropes. Astrophys J Lett 630 : L97–L100. https://doi.org/10.1086/462412. [CrossRef] [Google Scholar]
- Tschernitz J, Veronig AM, Thalmann JK, Hinterreiter J, Pötzi W. 2018. Reconnection fluxes in eruptive and confined flares and implications for superflares on the Sun. Astrophys J 853(1): 41. https://doi.org/10.3847/1538-4357/aaa199. [CrossRef] [Google Scholar]
- Tsurutani BT, Gonzalez WD, Gonzalez ALC, Guarnieri FL, Gopalswamy N, et al. 2006a. Corotating solar wind streams and recurrent geomagnetic activity: A review. J Geophys Res (Space Phys) 111(A7): A07S01. https://doi.org/10.1029/2005JA011273. [Google Scholar]
- Tsurutani BT, Gonzalez WD, Gonzalez ALC, Tang F, Arballo JK, Okada M. 1995. Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. J Geophys Res 100(A11): 21717–21734. https://doi.org/10.1029/95JA01476. [NASA ADS] [CrossRef] [Google Scholar]
- Tsurutani BT, Lakhina GS, Hajra R. 2020. The physics of space weather/solar-terrestrial physics (STP): what we know now and what the current and future challenges are. Nonlinear Process Geophys 27(1): 75–119. https://doi.org/10.5194/npg-27-75-2020. [CrossRef] [Google Scholar]
- Tsurutani BT, McPherron RL, Gonzalez WD, Lu G, Sobral JHA, Gopalswamy N. 2006b. Introduction to special section on corotating solar wind streams and recurrent geomagnetic activity. J Geophys Res (Space Phys) 111(A7): A07S00. https://doi.org/10.1029/2006JA011745. [Google Scholar]
- Uchida Y, Altschuler MD, Newkirk GJ. 1973. Flare-produced coronal MHD-fast-mode wavefronts and Moreton’s wave phenomenon. Sol Phys 28 : 495. https://doi.org/10.1007/BF00152320. [NASA ADS] [CrossRef] [Google Scholar]
- Uwamahoro J, McKinnell LA, Habarulema JB. 2012. Estimating the geoeffectiveness of halo CMEs from associated solar and IP parameters using neural networks. Ann Geophys 30(6): 963–972. https://doi.org/10.5194/angeo-30-963-2012. [CrossRef] [Google Scholar]
- Valach F, Revallo M, Bochnček J, Hejda P. 2009. Solar energetic particle flux enhancement as a predictor of geomagnetic activity in a neural network-based model. Space Weather 7(4): S04004. https://doi.org/10.1029/2008SW000421. [CrossRef] [Google Scholar]
- Vandas M, Fischer S, Dryer M, Smith Z, Detman T. 1995. Simulation of magnetic cloud propagation in the inner heliosphere in two-dimensions. 1. A loop perpendicular to the ecliptic plane. J Geophys Res 100(A7): 12285–12292. https://doi.org/10.1029/94JA03279. [NASA ADS] [CrossRef] [Google Scholar]
- Vandas M, Fischer S, Dryer M, Smith Z, Detman T. 1996. Simulation of magnetic cloud propagation in the inner heliosphere in two dimensions 2. A loop parallel to the ecliptic plane and the role of helicity. J Geophys Res 101 : 2505–2510. https://doi.org/10.1029/95JA02446. [NASA ADS] [CrossRef] [Google Scholar]
- Vennerstrom S, Lefevre L, Dumbović M, Crosby N, Malandraki O, et al. 2016. Extreme Geomagnetic Storms – 1868–2010. Sol Phys 291(5): 1447–1481. https://doi.org/10.1007/s11207-016-0897-y. [NASA ADS] [CrossRef] [Google Scholar]
- Verbanac G, Vršnak B, Veronig A, Temmer M. 2011a. Equatorial coronal holes, solar wind high-speed streams, and their geoeffectiveness. Astron Astrophys 526 : A20. https://doi.org/10.1051/0004-6361/201014617. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Verbeke C, Mays ML, Temmer M, Bingham S, Steenburgh R, et al. 2019. Benchmarking CME arrival time and impact: progress on metadata, metrics, and events. Space Weather 17(1): 6–26. https://doi.org/10.1029/2018SW002046. [NASA ADS] [CrossRef] [Google Scholar]
- Veronig AM, Gömöry P, Kienreich IW, Muhr N, Vršnak B, Temmer M, Warren HP. 2011. Plasma diagnostics of an EIT wave observed by Hinode/EIS and SDO/AIA. Astrophys J Lett 743(1): L10. https://doi.org/10.1088/2041-8205/743/1/L10. [NASA ADS] [CrossRef] [Google Scholar]
- Veronig AM, Karlický M, Vršnak B, Temmer M, Magdalenić J, Dennis BR, Otruba W, Pötzi W. 2006. X-ray sources and magnetic reconnection in the X3.9 flare of 2003 November 3. Astron Astrophys 446 : 675–690. https://doi.org/10.1051/0004-6361:20053112. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Veronig AM, Muhr N, Kienreich IW, Temmer M, Vršnak B. 2010. First Observations of a Dome-shaped Large-scale Coronal Extreme-ultraviolet Wave. Astrophys J Lett 716(1): L57–L62. https://doi.org/10.1088/2041-8205/716/1/L57. [CrossRef] [Google Scholar]
- Veronig AM, Podladchikova T, Dissauer K, Temmer M, Seaton DB, Long D, Guo J, Vršnak B, Harra L, Kliem B. 2018. Genesis and impulsive evolution of the 2017 September 10 coronal mass ejection. Astrophys J 868 : 107. https://doi.org/10.3847/1538-4357/aaeac5. [NASA ADS] [CrossRef] [Google Scholar]
- Veronig AM, Temmer M, Vršnak B. 2008. High-cadence observations of a global coronal wave by STEREO EUVI. Astrophys J Lett 681(2): L113. https://doi.org/10.1086/590493. [NASA ADS] [CrossRef] [Google Scholar]
- Vourlidas A, Patsourakos S, Savani NP. 2019. Predicting the geoeffective properties of coronal mass ejections: current status, open issues and path forward. Philos Trans R Soc London Ser A 377(2148): 20180,096. https://doi.org/10.1098/rsta.2018.0096. [Google Scholar]
- Vourlidas A, Subramanian P, Dere KP, Howard RA. 2000. Large-angle spectrometric coronagraph measurements of the energetics of coronal mass ejections. Astrophys J 534 : 456–467. https://doi.org/10.1086/308747. [NASA ADS] [CrossRef] [Google Scholar]
- Vršnak B. 1990. Eruptive instability of cylindrical prominences. Sol Phys 129 : 295–312. https://doi.org/10.1007/BF00159042. [NASA ADS] [CrossRef] [Google Scholar]
- Vršnak B. 2001. Dynamics of solar coronal eruptions. J Geophys Res 106 : 25249–25260. https://doi.org/10.1029/2000JA004007. [NASA ADS] [CrossRef] [Google Scholar]
- Vršnak B. 2008. Processes and mechanisms governing the initiation and propagation of CMEs. Ann Geophys 26 : 3089–3101. https://doi.org/10.5194/angeo-26-3089-2008. [NASA ADS] [CrossRef] [Google Scholar]
- Vršnak B. 2009. The Role of reconnection in the CME/Flare process. Adv Geosci 14 : 43. ISBN 9789812836,199. [Google Scholar]
- Vršnak B. 2016. Solar eruptions: The CME-flare relationship. Astron Nachr 337 : 1002. https://doi.org/10.1002/asna.201612424. [CrossRef] [Google Scholar]
- Vršnak B. 2019. Gradual pre-eruptive phase of solar coronal eruptions. Front Astron Space Sci 6 : 28. https://doi.org/10.3389/fspas.2019.00028. [CrossRef] [Google Scholar]
- Vršnak B, Aurass H, Magdalenić J, Gopalswamy N. 2001. Band-splitting of coronal and interplanetary type II bursts. I. Basic properties. Astron Astrophys 377 : 321–329. https://doi.org/10.1051/0004-6361:20011067. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Vršnak B, Cliver EW. 2008. Origin of coronal shock waves. Invited Review. Sol Phys 253 : 215–235. https://doi.org/10.1007/s11207-008-9241-5. [CrossRef] [Google Scholar]
- Vršnak B, Lulić S. 2000. Formation of coronal MHD shock waves – I. The basic mechanism. Sol Phys 196 : 157–180. https://doi.org/10.1023/A:1005236804727. [NASA ADS] [CrossRef] [Google Scholar]
- Vršnak B, Magdalenić J, Temmer M, Veronig A, Warmuth A, Mann G, Aurass H, Otruba W. 2005a. Broadband metric-range radio emission associated with a Moreton/EIT wave. Astrophys J Lett 625 : L67–L70. https://doi.org/10.1086/430763. [NASA ADS] [CrossRef] [Google Scholar]
- Vršnak B, Maričić D, Stanger AL, Veronig A. 2004a. Coronal Mass Ejection of 15 May 2001: II. Coupling of the CME acceleration and the flare energy release. Sol Phys 225 : 355–378. https://doi.org/10.1007/s11207-004-4995-x. [NASA ADS] [CrossRef] [Google Scholar]
- Vršnak B, Maričić D, Stanger AL, Veronig AM, Temmer M, Roša D. 2007. Acceleration phase of coronal mass ejections: I. Temporal and spatial scales. Sol Phys 241 : 85–98. https://doi.org/10.1007/s11207-006-0290-3. [NASA ADS] [CrossRef] [Google Scholar]
- Vršnak B, Poletto G, Vujić E, Vourlidas A, Ko YK, et al. 2009. Morphology and density structure of post-CME current sheets. Astron Astrophys 499(3): 905–916. https://doi.org/10.1051/0004-6361/200810844. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Vršnak B, Ruždjak D, Sudar D, Gopalswamy N. 2004b. Kinematics of coronal mass ejections between 2 and 30 solar radii. What can be learned about forces governing the eruption? Astron Astrophys 423 : 717–728. https://doi.org/10.1051/0004-6361:20047169. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Vršnak B, Sudar D, Ruždjak D. 2005b. The CME-flare relationship: Are there really two types of CMEs? Astron Astrophys 435 : 1149–1157. https://doi.org/10.1051/0004-6361:20042166. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Vršnak B, Temmer M, Žic T, Taktakishvili A, Dumbović M, Möstl C, Veronig AM, Mays ML, Odstrčil D. 2014. Heliospheric propagation of coronal mass ejections: Comparison of numerical WSA-ENLIL+Cone model and analytical drag-based model. Astrophys J Suppl Ser 213 : 21. https://doi.org/10.1088/0067-0049/213/2/21. [CrossRef] [Google Scholar]
- Vršnak B, Žic T, Vrbanec D, Temmer M, Rollett T, et al. 2013. Propagation of interplanetary coronal mass ejections: The drag-based model. Sol Phys 285 : 295–315. https://doi.org/10.1007/s11207-012-0035-4. [NASA ADS] [CrossRef] [Google Scholar]
- Vršnak B, Vrbanec D, Čalogović J. 2008. Dynamics of coronal mass ejections. The mass-scaling of the aerodynamic drag. Astron Astrophys 490 : 811–815. https://doi.org/10.1051/0004-6361:200810215. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Vršnak B, Žic T, Lulić S, Temmer M, Veronig AM. 2016. Formation of coronal large-amplitude waves and the chromospheric response. Sol Phys 291(1): 89–115. https://doi.org/10.1007/s11207-015-0822-9. [NASA ADS] [CrossRef] [Google Scholar]
- Vršnak B, Warmuth A, Brajša R, Hanslmeier A. 2002. Flare waves observed in Helium I 10 830 Å. A link between Hα Moreton and EIT waves. Astron Astrophys 394 : 299–310. https://doi.org/10.1051/0004-6361:20021121. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Vršnak B, Warmuth A, Temmer M, Veronig A, Magdalenić J, Hillaris A, Karlický M. 2006. Multi-wavelength study of coronal waves associated with the CME-flare event of 3 November 2003. Astron Astrophys 448(2): 739–752. https://doi.org/10.1051/0004-6361:20053740. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Wang Y, Shen C, Wang S, Ye P. 2004. Deflection of coronal mass ejection in the interplanetary medium. Sol Phys 222(2): 329–343. https://doi.org/10.1023/B:SOLA.0000043576.21942.aa. [NASA ADS] [CrossRef] [Google Scholar]
- Warmuth A. 2007. Large-scale Waves and Shocks in the Solar Corona. In: The High Energy Solar Corona: Waves, Eruptions, Particles, vol 725 , Lecture Notes in Physics, Klein K-L, MacKinnon AL, (Eds.) Springer Verlag, Berlin. pp. 107–138 ISBN 978-3-540-71,569-6. [NASA ADS] [CrossRef] [Google Scholar]
- Warmuth A. 2015. Large-scale Globally Propagating Coronal Waves. Living Rev Sol Phys 12(1): 3. https://doi.org/10.1007/lrsp-2015-3. [CrossRef] [Google Scholar]
- Warmuth A, Vršnak B, Aurass H, Hanslmeier A. 2001. Evolution of Two EIT/Hα Moreton Waves. Astrophys J Lett 560 : L105–L109. https://doi.org/10.1086/324055. [NASA ADS] [CrossRef] [Google Scholar]
- Warmuth A, Vršnak B, Magdalenić J, Hanslmeier A, Otruba W. 2004. A multiwavelength study of solar flare waves. I. Observations and basic properties. Astron Astrophys 418 : 1101–1115. https://doi.org/10.1051/0004-6361:20034332. [Google Scholar]
- Witasse O, Sánchez-Cano B, Mays ML, Kajdič P, Opgenoorth H, et al. 2017. Interplanetary coronal mass ejection observed at STEREO-A, Mars, comet 67P/Churyumov-Gerasimenko, Saturn, and New Horizons en route to Pluto: Comparison of its Forbush decreases at 1.4, 3.1, and 9.9 AU. J Geophys Res (Space Phys) 122(8): 7865–7890. https://doi.org/10.1002/2017JA023884. [NASA ADS] [CrossRef] [Google Scholar]
- Zhang J, Dere KP. 2006. A Statistical study of main and residual accelerations of coronal mass ejections. Astrophys J 649 : 1100–1109. https://doi.org/10.1086/506903. [CrossRef] [Google Scholar]
- Žic T, Vršnak B, Skender M. 2007. The magnetic flux and self-inductivity of a thick toroidal current. J Plasma Phys J Plasma Phys 73 : 741–756. https://doi.org/10.1017/S0022377806006209. [Google Scholar]
- Žic T, Vršnak B, Temmerr M. 2015. Heliospheric propagation of coronal mass ejections: drag-based model fitting. Astrophys J Suppl Ser 218 : 32. https://doi.org/10.1088/0067-0049/218/2/32. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.