Open Access
Issue |
J. Space Weather Space Clim.
Volume 11, 2021
Topical Issue - 10 years of JSWSC
|
|
---|---|---|
Article Number | 29 | |
Number of page(s) | 12 | |
Section | Agora | |
DOI | https://doi.org/10.1051/swsc/2021011 | |
Published online | 14 April 2021 |
- Adriani O, Barbarino GC, Bazilevskaya GA, Bellotti R, Boezio M, et al. 2016. PAMELA’s measurements of geomagnetic cutoff variations during the 14 December 2006 storm. Space Weather 14: 210–220. https://doi.org/10.1002/2016SW001364 . [CrossRef] [Google Scholar]
- Albuquerque Journal. 1941. Vol. 250 , Albuquerque NM, USA, 17 p. [Google Scholar]
- Allen J, Sauer H, Frank L, Reiff P. 1989. Effects of the March 1989 solar activity. Eos Trans AGU 70 ( 46 ) : 1479–1488. https://doi.org/10.1029/89EO00409 . [NASA ADS] [CrossRef] [Google Scholar]
- Araki T. 2014. Historically largest geomagnetic sudden commencement (SC) since 1868. Earth Planet Space 66 : 164. https://doi.org/10.1186/s40623-014-0164-0 . [NASA ADS] [CrossRef] [Google Scholar]
- Ayiomamitis A. 2003. http://www.perseus.gr/Astro-Aurorae-20031120-001.htm, Accessed 5 Feb 2020. [Google Scholar]
- Bartels J, Heck NH, Johnston HF. 1939. The three-hour-range index measuring geomagnetic activity. Terr Magn Atmos Electr 44 ( 4 ) : 411–454. https://doi.org/10.1029/TE044i004p00411 . [NASA ADS] [CrossRef] [Google Scholar]
- Bekli MR, Chadou I. 2020. Records of auroras in Arabic historical sources: Additional list and preliminary analysis. Solar Phys 295 : 3. https://doi.org/10.1007/s11207-019-1567-7. [CrossRef] [Google Scholar]
- Borovsky JE, Shprits YY. 2017. Is the Dst index sufficient to define all geospace storms? J Geophys Res (Space Phys) 122 : 11543–11547. https://doi.org/10.1002/2017JA024679 . [CrossRef] [Google Scholar]
- Boteler DH. 2019. A 21st century view of the March 1989 magnetic storm. Space Weather 17 : 1427–1441. https://doi.org/10.1029/2019SW002278 . [CrossRef] [Google Scholar]
- Caldwell B, McCarron E, Jonas S. 2017. An abridged history of federal involvement in space weather forecasting. Space Weather 15 : 1222–1237. https://doi.org/10.1002/2017SW001626 . [CrossRef] [Google Scholar]
- Cannon PS. 2013. Extreme space weather: Impacts on engineered systems. Royal Academy of Engineering, London, UK. https://www.raeng.org.uk/publications/reports/space-weather-full-report . [Google Scholar]
- Carrington RC. 1859. Description of a singular appearance seen in the sun on September 1, 1859. Mon Notic Roy Astron Soc 20 : 13–15. https://doi.org/10.1093/mnras/20.1.13 . [NASA ADS] [CrossRef] [Google Scholar]
- Carrano CS, Bridgwood CT, Groves KM. 2009. Impacts of the December 2006 solar radio bursts on the performance of GPS. Radio Sci 44 : RS0A25. https://doi.org/10.1029/2008RS004071 . [Google Scholar]
- Case NA, MacDonald EA, Viereck R. 2016. Using citizen science reports to define the equatorial extent of auroral visibility. Space Weather 14 : 198–209. https://doi.org/10.1002/2015SW001320 . [CrossRef] [Google Scholar]
- Cerruti AP, Kintner PM, Gary DE, Mannucci AJ, Meyer RF, Doherty P, Coster AJ. 2008. Effect of intense December 2006 solar radio bursts on GPS receivers. Space Weather 6 : S10D07. https://doi.org/10.1029/2007SW000375 . [CrossRef] [Google Scholar]
- Chapman SC, Horne RB, Watkins NW. 2020. Using the aa index over the last 14 solar cycles to characterize extreme geomagnetic activity. Geophys Res Lett 47 : e2019GL086524. https://doi.org/10.1029/2019GL086524 . [Google Scholar]
- Cliver EW, Svalgaard L. 2004. The 1859 solar-terrestrial disturbance and the current limits of extreme space weather activity. Sol Phys 224 : 407–422. https://doi.org/10.1007/s11207-005-4980-z . [NASA ADS] [CrossRef] [Google Scholar]
- Cliver EW, Dietrich WF. 2013. The 1859 space weather event revisited: limits of extreme activity. J. Space Weather Space Clim 3 : A31. https://doi.org/10.1051/swsc/2013053 . [CrossRef] [EDP Sciences] [Google Scholar]
- Ebihara Y, Hayakawa H, Iwahashi K, Tamazawa H, Kawamura AD, Isobe H. 2017. Possible cause of extremely bright aurora witnessed in East Asia on 17 September 1770. Space Weather 15 : 1373–1382. https://doi.org/10.1002/2017SW001693 . [NASA ADS] [CrossRef] [Google Scholar]
- Forbush SE. 1938. On cosmic-ray effects associated with magnetic storms. Terr Magn Atmos Electr 43 : 203–218. https://doi.org/10.1029/TE043i003p00203 . [NASA ADS] [CrossRef] [Google Scholar]
- Futaana Y, Barabash S, Yamauchi SM, McKenna-Lawlor S, Lundin R, et al. 2008. Mars express and venus express multi-point observations of geoeffective solar flare events in December 2006. Planet Space Sci 56 ( 6 ) : 873–880. https://doi.org/10.1016/j.pss.2007.10.014 . [CrossRef] [Google Scholar]
- Hattori K, Hayakawa H, Ebihara Y. 2019. Occurrence of great magnetic storms on 6–8 March 1582. Mon Notic Roy Astron Soc 487 : 3550. https://academic.oup.com/mnras/article/487/3/3550/5522353 . [Google Scholar]
- Hapgood M. 2019. The great storm of May 1921: An exemplar of a dangerous space weather event. Space Weather 17 : 950–975. https://doi.org/10.1029/2019SW002195 . [CrossRef] [Google Scholar]
- Hayakawa H, Iwahashi K, Ebihara Y, Tamazawa H, Shibata K, et al. 2017. Long-lasting extreme magnetic storm activities in 1770 found in historical documents. Astrophys J Lett 850 : L31. https://doi.org/10.3847/2041-8213/aa9661 . [NASA ADS] [CrossRef] [Google Scholar]
- Hayakawa H, Ebihara Y, Vaquero JM, Hattori K, Carrasco VMS, et al. 2018a. A great space weather event in February 1730. A&A 616 : A177. https://doi.org/10.1051/0004-6361/201832735 . [CrossRef] [EDP Sciences] [Google Scholar]
- Hayakawa H, Ebihara Y, Hand DP, Hayakawa S, Kumar S, Mukherjee S, Veenadhari B. 2018b. Low-latitude aurorae during the extreme space weather events in 1859. Astrophys J 869 : 57. https://doi.org/10.3847/1538-4357/aae47c . [CrossRef] [Google Scholar]
- Hayakawa H, Ebihara Y, Willis DM, Hattori K, Giunta AS, et al. 2018c. The great space weather event during 1872 February recorded in East Asia. Astrophys J 862 : 15. https://doi.org/10.3847/1538-4357/aaca40 . [CrossRef] [Google Scholar]
- Hayakawa H, Ebihara Y, Willis DM, Toriumi S, Iju T, Hattori K, et al. 2019a. Temporal and spatial evolutions of a large sunspot group and great auroral storms around the Carrington event in 1859. Space Weather 17 : 1553–1569. https://doi.org/10.1029/2019SW002269 . [CrossRef] [Google Scholar]
- Hayakawa H, Ebihara Y, Cliver EW, Hattori K, Toriumi S, et al. 2019b. The extreme space weather event in September 1909. Mon Notic Roy Astron Soc 484 : 3. https://doi.org/10.1093/mnras/sty3196 . [CrossRef] [Google Scholar]
- Hayakawa H, José RR, Yusuke E, Correia AP, Sôma M. 2020a. South American auroral reports during the Carrington storm. Earth, Planets Space 72 : 1. https://doi.org/10.1186/s40623-020-01249-4 . [CrossRef] [Google Scholar]
- Hayakawa H, Ribeiro P, Vaquero JM, Gallego MC, Knipp DJ, et al. 2020b. The extreme space weather event in 1903 October/November: An outburst from the quiet Sun, 2020. Astrophys J Lett 897 : L10. https://doi.org/10.3847/2041-8213/ab6a18 . [CrossRef] [Google Scholar]
- Hayakawa H, Ebihara Y, Pevtsov AA, Bhaskar A, Karachik N, Oliveira DM. 2020c. Intensity and time series of extreme solar-terrestrial storm in March 1946. Mon Notic Roy Astron Soc 497 : 5507–5517. https://doi.org/10.1093/mnras/staa1508 . [CrossRef] [Google Scholar]
- Hayakawa H, Hattori K, Pevtsov AA, Ebihara Y, Shea MA, et al. 2021a. The intensity and evolution of the extreme solar and geomagnetic storms in 1938 January. Astrophys J 909 : 197. https://doi.org/10.3847/1538-4357/abc427 . [CrossRef] [Google Scholar]
- Hayakawa H, Blake SP, Bhaskar A, Hattori K, Oliveira DM, Ebihara Y. 2021b. The extreme space weather event in 1941 February/March. Astrophys J 908 : 209. https://doi.org/10.3847/1538-4357/abb772 . [CrossRef] [Google Scholar]
- Hiorter OP. 1747. Om magnet-nålens åtskillige ändringar, som af framledne professoren herr And. Celsius blifvit i akt tagne och sedan vidare observerade, samt nu framgifne. Kongl Svenska Vetenskaps Academiens Handlingar 8 : 27–43. [Google Scholar]
- Hodgson R. 1859. On a curious Appearance seen in the Sun. Mon Notic Roy Astron Soc 20 : 15–16. https://doi.org/10.1093/mnras/20.1.15 . [NASA ADS] [CrossRef] [Google Scholar]
- Isobe H, Ebihara Y, Kawamura AD, Tamazawa H, Hayakawa H. 2019. Intense geomagnetic storm during Maunder minimum possibly by a quiescent filament eruption. Astrophys J 887 : 7. https://doi.org/10.3847/1538-4357/ab107e . [CrossRef] [Google Scholar]
- Jones HS. 1955. Sunspot and geomagnetic-storm data derived from Greenwich Observations 1874–1954. Her Majesty’s Stationery Office, London. ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_OBSERVATION/GREENWICH/Greenwich_SunspotStorm.pdf . [Google Scholar]
- Kataoka R, Ebisuzaki T, Kusano K, Shiota D, Inoue S, Yamamoto TT, Tokumaru M. 2009. Three-dimensional MHD modeling of the solar wind structures associated with 13 December 2006 coronal mass ejection. J Geophys Res 114 : A10102. https://doi.org/10.1029/2009JA014167 . [Google Scholar]
- Kataoka R, Iwahashi K. 2017. Inclined zenith aurora over Kyoto on 17 September 1770: Graphical evidence of extreme magnetic storm. Space Weather 15 : 1314–1320. https://doi.org/10.1002/2017SW001690 . [CrossRef] [Google Scholar]
- Kataoka R, Kazama S. 2019. A watercolor painting of northern lights seen above Japan on 11 February 1958. J Space Weather Space Clim 9 : A28. https://doi.org/10.1051/swsc/2019027 . [CrossRef] [Google Scholar]
- Kataoka R, Uchino S, Fujiwara Y, Fujita S, Yamamoto K. 2019. Fan-shaped aurora as seen from Japan during a great magnetic storm on 11 February 1958. J Space Weather Space Clim 9 : A16. https://doi.org/10.1051/swsc/2019013 . [CrossRef] [Google Scholar]
- Karinen A, Mursula K. 2005. A new reconstruction of the Dst index for 1932–2002. Ann Geophys 23 : 475–485. https://doi.org/10.5194/angeo-23-475-2005 . [CrossRef] [Google Scholar]
- Lang AS. 1849. On the aurora borealis of Nov. 17, 1848. Mont Not Roy Astron Soc 9 : 148. https://doi.org/10.1093/mnras/9.6.148 . [Google Scholar]
- Liu YD, Zhao X, Hu H, Vourlidas A, Zhu B. 2019. A comparative study of 2017 July and 2012 July complex eruptions: are solar superstorms “perfect storms” in nature? ApJS 241 : 15. https://doi.org/article/10.3847/1538-4365/ab0649 . [CrossRef] [Google Scholar]
- Love JJ. 2018. The electric storm of November 1882. Space Weather 16 : 37–46. https://doi.org/10.1002/2017SW001795 . [NASA ADS] [CrossRef] [Google Scholar]
- Love JJ, Coïsson P. 2016. The geomagnetic blitz of September 1941. Eos 97 . https://doi.org/10.1029/2016EO059319 . [Google Scholar]
- Love JJ, Hayakawa H, Cliver EW. 2019a. On the intensity of the magnetic superstorm of September 1909. Space Weather 17 ( 1 ) : 37–45. https://doi.org/10.1029/2018SW002079 . [CrossRef] [Google Scholar]
- Love JJ, Hayakawa H, Cliver EW. 2019b. Intensity and impact of the New York Railroad superstorm of May 1921. Space Weather 17 : 1281–1292. https://doi.org/10.1029/2019SW002250 . [CrossRef] [Google Scholar]
- Loewe CA, Prölss GW. 1997. Classification and mean behavior of magnetic storms. J. Geophys Res 102 ( A7 ) : 14209–14213. https://doi.org/10.1029/96JA04020 . [CrossRef] [Google Scholar]
- Maden N. 2020. Historical aurora borealis catalog for Anatolia and Constantinople (hABcAC) during the Eastern Roman Empire period: implications for past solar activity. Ann Geophys 38 : 4. https://doi.org/10.5194/angeo-38-889-2020 . [CrossRef] [Google Scholar]
- Matthiä D, Heber B, Reitz G, Sihver L, Berger T, Meier M. 2009. The ground level event 70 on December 13th, 2006 and related effective doses at aviation altitudes. Radiat Prot Dosim 136 ( 4 ) : 304–310. https://doi.org/10.1093/rpd/ncp141 . [CrossRef] [Google Scholar]
- Mayaud PN, International Union of Geodesy and Geophysics, International Association of Geomagnetism and Aeronomy. 1973. A hundred year series of geomagnetic data, 1868–1967: Indices aa storm sudden commencements. IUGG Publications Office, Paris. [Google Scholar]
- McKenna-Lawlor SMP, Dryer M, Fry CD, Smith ZK, Intriligator DS, et al. 2008. Predicting interplanetary shock arrivals at Earth, Mars, and Venus: A real-time modeling experiment following the solar flares of 5–14 December 2006. J Geophys Res 113 : A06101. https://doi.org/10.1029/2007JA012577 . [Google Scholar]
- McNish AG. 1941. The Aurora and Geomagnetic Storm of September 18–19, 1941. Terr Magn Atmos Electr 46 ( 4 ) : 461–463. https://doi.org/10.1029/TE046i004p00461 . [CrossRef] [Google Scholar]
- Nakazawa Y, Okada K, Shiokawa K. 2004. Understanding the “SEKKI” phenomena in Japanese historical literatures based on the modern science of low-latitude aurora. Earth Planets Space 56 . https://doi.org/10.1186/BF03353323 . [Google Scholar]
- NGDC, National Geophysical Data Center, NOAA. 2007. https://sxi.ngdc.noaa.gov/docs/goes13_sxi_anomaly_20061205_v1.pdf, accessed 17 December. [Google Scholar]
- Ni YY. 2018. The statistical analysis of the Geomagnetically Induced Current events occurred in Guangdong, China during the declining phase of solar cycle 23 (2003–2006). IOP Conf Ser Mater Sci Eng 339 ( 1 ) : 012013. https://doi.org/10.1088/1757-899X/339/1/012013 . [CrossRef] [Google Scholar]
- Nicholson SB. 1938. The great sunspot of January 1938. Eos Trans AGU 19 ( 1 ) : 203–204. https://doi.org/10.1029/TR019i001p00203 . [CrossRef] [Google Scholar]
- Nicholson SB. 1940. The great magnetic storm of March 24, 1940. Publ Astron Soc Pac 52 ( 307 ) : 169. https://doi.org/10.1086/125156 . [CrossRef] [Google Scholar]
- Nicholson SB, Sternberg-Mulders E. 1939. Sunspot Activity during 1938. Publ Astron Soc Pac 51 ( 299 ) : 51. https://doi.org/10.1086/124999 . [CrossRef] [Google Scholar]
- Nicolet M (Ed). 1959. The International Geophysical Year Meetings Annals of the International Geophysical Year, Vol. 2, Chap 7: The CSAGI Western Hemisphere Regional Conference, 16–20 July 1956, Rio de Janeiro. Permagon Press. ebook ISBN: 9781483226392. [Google Scholar]
- Odenwald S. 2007. Newspaper reporting of space weather: End of a golden age. Space Weather 5 : S11005. https://doi.org/10.1029/2007SW000344 . [Google Scholar]
- Pedatella NM, Lei J, Larson KM, Forbes JM. 2009. Observations of the ionospheric response to the 15 December 2006 geomagnetic storm: Long-duration positive storm effect. J Geophys Res 114 : A12313. https://doi.org/10.1029/2009JA014568 . [Google Scholar]
- Riley P. 2017. Statistics of extreme space weather events. In: Extreme Events in Geospace: Origins, Predictability, and Consequences, Buzulkova N, (Ed.), Elsevier, Amsterdam. pp. 115–138. https://www.sciencedirect.com/book/9780128127001/extreme-events-in-geospace . [Google Scholar]
- Rivera-Terrezas L, Gonzalez CG. 1964. La Rafaga Solar Del Dia 9 De Febrero De 1958. Boletin de los Observatorios de Tonantzintla Y Tacubaya 3 : 25. https://www.astroscu.unam.mx/bott/indexvol3num25.html . [Google Scholar]
- Silverman SM. 1995. Low latitude auroras: The storm of 25 September 1909. J Atmos Terr Phys 57 : 673–685. https://doi.org/10.1016/0021-9169(94)E0012-C . [NASA ADS] [CrossRef] [Google Scholar]
- Silverman SM. 2006. Comparison of the aurora of September 1/2, 1859 with other great auroras. Adv Space Res 38 ( 2 ) : 136–144. https://doi.org/10.1016/j.asr.2005.03.157 . [CrossRef] [Google Scholar]
- Silverman SM. 2008. Low-latitude auroras: The great aurora of 4 February 1872. J Atmos Sol Terr Phys 70 ( 10 ) : 1301–1308. https://doi.org/10.1016/j.jastp.2008.03.012 . [NASA ADS] [CrossRef] [Google Scholar]
- Silverman SM, Cliver EW. 2001. Low-latitude auroras: The magnetic storm of 14–15 May 1921. J Atmos Sol Terr Phys 63 ( 5 ) : 523–535. https://doi.org/10.1016/S1364-6826(00)00174-7 . [NASA ADS] [CrossRef] [Google Scholar]
- Silverman SM, Hayakawa H. 2021. The Dalton minimum and John Dalton’s auroral observations. J Space Weather Space Clim 11 : 17. https://doi.org/10.1051/swsc/2020082 . [CrossRef] [Google Scholar]
- Siscoe G, Crooker NU, Clauer CR. 2006. Dst of the Carrington storm of 1859. Adv Space Res 38 . https://doi.org/10.1016/j.asr.2005.02.102 . [Google Scholar]
- Stephenson FR, Willis DM, Hallinan TJ. 2004. The earliest datable observation of the aurora borealis. Astron Geophys 45 : 6. https://doi.org/10.1046/j.1468-4004.2003.45615.x . [Google Scholar]
- Suvorova AV, Dmitriev AV, Tsai L-C, Kunitsyn VE, Andreeva ES, Nesterov IA, Lazutin LL. 2013. TEC evidence for near-equatorial energy deposition by 30 keV electrons in the topside ionosphere. J Geophys Res (Space Phys) 118 : 4672–4695. https://doi.org/10.1002/jgra.50439 . [CrossRef] [Google Scholar]
- Temmer M, Reis MA, Nikolic L, Hofmeister SJ, Veronig AM. 2017. Preconditioning of interplanetary space due to transient CME disturbances. Astrophys J 835 ( 2 ) : 141. https://doi.org/10.3847/1538-4357/835/2/141 . [NASA ADS] [CrossRef] [Google Scholar]
- Tverskaya LV, Balashov SV, Vedenkin NN, Ivanov VV, Ivanova TA, et al. 2008. Solar proton increases and dynamics of the electron outer radiation belt during solar events in December 2006. Geomagn Aeron 48 : 719–726. https://doi.org/10.1134/S0016793208060042 . [CrossRef] [Google Scholar]
- Usoskin IG, Solanki SK, Kovaltsov GA. 2007. Grand minima and maxima of solar activity: new observational constraints. A&A 471 : 301–309. https://doi.org/10.1051/0004-6361:20077704 . [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Usoskin IG, Solanki SK, Kovaltsov GA. 2011. Grand minima of solar activity during the last millennia, in Comparative Magnetic Minima: Characterizing quiet times in the Sun and Stars. Proc Int Astron Union, IAU Symposium 286 : 372–382. https://doi.org/10.1017/S174392131200511X . [CrossRef] [Google Scholar]
- Vallance Jones A. 1992. Historical review of great auroras. Can J Phys 70 : 479–487. https://doi.org/10.1139/p92-083 . [CrossRef] [Google Scholar]
- Vaquero JM, Valente MA, Trigo RM, Ribeiro P, Gallego MC. 2008. The 1870 space weather event: Geomagnetic and auroral records. J Geophys Res 113 : A08230. https://doi.org/10.1029/2007JA012943 . [NASA ADS] [CrossRef] [Google Scholar]
- Vaquero JM, Vázquez M. 2009. Terrestrial Aurorae and solar-terrestrial relations. In: Chap 6 in The sun recorded through history, Astrophysics and Space Science Library, Vaquero JM, Vázquez M (Ed.), Springer, New York, NY, Vol. 361 , pp. 279–336. https://doi.org/10.1007/978-0-387-92790-9 . [CrossRef] [Google Scholar]
- Vázquez M, Vaquero JM, Curto JJ. 2006. On the connection between solar activity and low-latitude aurorae in the period 1715–1860. Sol Phys 238 : 405–420. https://doi.org/10.1007/s11207-006-0194-2 . [CrossRef] [Google Scholar]
- Watari S, Kunitake M, Kitamura K, Hori T, Kikuchi T, et al. 2009. Measurements of geomagnetically induced current in a power grid in Hokkaido, Japan. Space Weather 7 : S03002. https://doi.org/10.1029/2008SW000417 . [Google Scholar]
- Willis DM, Stephenson FR. 2000. Simultaneous auroral observations described in the historical records of China, Japan and Korea from ancient times to AD 1700. Ann Geophys 18 : 1–10. https://doi.org/10.1007/s00585-000-0001-6 . [CrossRef] [Google Scholar]
- Willis DM, Stephenson FR, Singh JR. 1996. Auroral Observations on AD 1770 September 16: the Earliest Known Conjugate Sightings. Q J Roy Astr Soc 37 : 733–742. https://www.researchgate.net/publication/234226512_Auroral_Observations_on_AD_1770_September_16_the_Earliest_Known_Conjugate_Sightings, accessed on 20 Dec 2020 [Google Scholar]
- World Data Center for Geomagnetism, Kyoto M, Nose M, Iyemori T, Sugiura M, Kamei T. 2015. Geomagnetic Dst index. https://doi.org/10.17593/14515-74000 . [Google Scholar]
- Zhang W, Zhang DH, Xiao Z. 2009. The influence of geomagnetic storms on the estimation of GPS instrumental biases. Ann Geophys 27 ( 4 ) : 1613–1623. https://www.ann-geophys.net/27/1613/2009/ . [CrossRef] [Google Scholar]
- Zhou GP, Xiao CJ, Wang JX, Wheatland MS, Zhao H. 2011. A current sheet traced from the Sun to interplanetary space. A&A 525 : A156. https://doi.org/10.1051/0004-6361/201015726 . [CrossRef] [EDP Sciences] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.