Open Access
Issue |
J. Space Weather Space Clim.
Volume 11, 2021
|
|
---|---|---|
Article Number | 44 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/swsc/2021029 | |
Published online | 13 August 2021 |
- Albertson VD, Kappenman JG, Mohan N, Skarbakka GA. 1981. Load-flow studies in the presence of geomagnetically-induced currents. IEEE Trans Power Appar Syst PAS-100(2): 594–607. https://doi.org/10.1109/TPAS.1981.316916. [CrossRef] [Google Scholar]
- Belakhovsky V, Pilipenko V, Engebretson M, Sakharov Y, Selivanov V. 2019. Impulsive disturbances of the geomagnetic field as a cause of induced currents of electric power lines. J Space Weather Space Clim 9: A18. https://doi.org/10.1051/swsc/2019015. [Google Scholar]
- Bolduc L. 2002. GIC observations and studies in the Hydro-Québec power system. J Atmos Sol-Terr Phys 64(16): 1793–1802. https://doi.org/10.1016/S1364-6826(02)00128-1. [Google Scholar]
- Boteler DH. 2001. Assessment of geomagnetic hazard to power systems in Canada. Nat Hazards 23(2–3): 101–120. https://doi.org/10.1023/A:1011194414259. [Google Scholar]
- Boteler DH. 2003. Geomagnetic hazards to conducting networks. Nat Hazards 28(2–3): 537–561. https://doi.org/10.1023/A:1022902713136. [Google Scholar]
- Boteler DH. 2019. A 21st century view of the March 1989 magnetic storm. Space Weather 17(10): 1427–1441. https://doi.org/10.1029/2019SW002278. [CrossRef] [Google Scholar]
- Boteler DH, Pirjola RJ. 2017. Modeling geomagnetically induced currents. Space Weather 15(1): 258–276. https://doi.org/10.1002/2016SW001499. [CrossRef] [Google Scholar]
- Chinkin VE, Soloviev AA, Pilipenko VA, Engebretson MJ, Sakharov Y. 2021. Determination of vortex current structure in the high-latitude ionosphere with associated GIC bursts from ground magnetic data. J Atmos Sol-Terr Phys 212(November 2020): 105,514. https://doi.org/10.1016/j.jastp.2020.105514. [Google Scholar]
- Clilverd MA, Rodger CJ, Brundell JB, Dalzell M, Martin I, Mac Manus DH, Thomson NR. 2020. Geomagnetically induced currents and harmonic distortion: High time resolution case studies. Space Weather 18(10): e2020SW002594. https://doi.org/10.1029/2020SW002594. [CrossRef] [Google Scholar]
- Connors M, Schofield I, Reiter K, Chi PJ, Rowe KM, Russell CT. 2016. The AUTUMNX magnetometer meridian chain in Québec, Canada. Earth Planets Space 68(1): 2. https://doi.org/10.1186/s40623-015-0354-4. [Google Scholar]
- Danskin DW, Lotz SI. 2015. Analysis of geomagnetic hourly ranges. Space Weather 13(8): 458–468. https://doi.org/10.1002/2015SW001184. [CrossRef] [Google Scholar]
- Engebretson MJ, Yeoman TK, Oksavik K, Søraas F, Sigernes F, et al. 2013. Multi-instrument observations from Svalbard of a traveling convection vortex, electromagnetic ion cyclotron wave burst, and proton precipitation associated with a bow shock instability. J Geophys Res: Space Phys 118(6): 2975–2997. https://doi.org/10.1002/jgra.50291. [Google Scholar]
- Engebretson MJ, Pilipenko VA, Ahmed LY, Posch JL, Steinmetz ES, et al. 2019a. Nighttime magnetic perturbation events observed in Arctic Canada: 1. Survey and statistical analysis. J Geophys Res: Space Phys 124(9): 7442–7458. https://doi.org/10.1029/2019JA026794. [Google Scholar]
- Engebretson MJ, Steinmetz ES, Posch JL, Pilipenko VA, Moldwin MB, et al. 2019b. Nighttime magnetic perturbation events observed in Arctic Canada: 2. Multiple-instrument observations. J Geophys Res: Space Phys 124(9): 7459–7476. https://doi.org/10.1029/2019JA026797. [Google Scholar]
- Frey HU, Mende SB, Angelopoulos V, Donovan EF. 2004. Substorm onset observations by IMAGE-FUV. J Geophys Res: Space Phys 109(A10): 1–6. https://doi.org/10.1029/2004JA010607. [CrossRef] [Google Scholar]
- Friis-Christensen E, McHenry MA, Clauer CR, Vennerstrøm S. 1988. Ionospheric traveling convection vortices observed near the polar cleft: A triggered response to sudden changes in the solar wind. Geophys Res Lett 15(3): 253–256. https://doi.org/10.1029/GL015i003p00253. [CrossRef] [Google Scholar]
- Fukushima N. 1994. Some topics and historical episodes in geomagnetism and aeronomy. J Geophys Res 99(A10): 19,113. https://doi.org/10.1029/94ja00102. [Google Scholar]
- Gjerloev JW. 2012. The SuperMAG data processing technique. J Geophys Res: Space Phys 117(A9): A09213. https://doi.org/10.1029/2012JA017683. [Google Scholar]
- Guillon S, Toner P, Gibson L, Boteler D. 2016. A colorful blackout. IEEE Power Energy Mag 14(November/December): 59–71. https://doi.org/10.1109/MPE.2016.2591760. [Google Scholar]
- Harang L. 1946. The mean field of disturbance of polar geomagnetic storms. Terr Magn Atmos Elect 51(3): 353–380. https://doi.org/10.1029/TE051i003p00353. [Google Scholar]
- Harris SE, Mende SB, Angelopoulos V, Rachelson W, Donovan E, et al. 2009. THEMIS ground based observatory system design, Springer New York, New York, NY, pp. 213–233. ISBN 978-0-387-89820-9. https://doi.org/10.1007/978-0-387-89820-9_10. [Google Scholar]
- Hruska J, Coles RL. 1987. A new type of magnetic activity forecast for high geomagnetic latitudes. J Geomagn Geoelect 39(9): 521–534. https://doi.org/10.5636/jgg.39.521. [Google Scholar]
- Kamide Y. 1978. On current continuity at the Harang discontinuity. Planet Space Sci 26(3): 237–244. https://doi.org/10.1016/0032-0633(78)90089-2. [Google Scholar]
- Kamide Y, Vickrey JF. 1983. Variability of the Harang discontinuity as observed by the Chatanika radar and the IMS Alaska magnetometer chain. Geophys Res Lett 10(2): 159–162. https://doi.org/10.1029/GL010i002p00159. [Google Scholar]
- Kamwa I, Béland J, Trudel G, Grondin R, Lafond C, McNabb D. 2006. Wide-area monitoring and control at Hydro-Québec: Past, present and future. In: 2006 IEEE Power Engineering Society General Meeting, PES, Vol. 7. IEEE, Montréal, QC, Canada, p. 12. https://doi.org/10.1109/pes.2006.1709097. [Google Scholar]
- Kanasewich ER. 1974. Time sequence analysis in geophysics, Canadian Electronic Library. Canadian publishers collection. University of Alberta Press, Edmonton. ISBN 1-4593-0464-0. [Google Scholar]
- Kappenman JG. 2005. An overview of the impulsive geomagnetic field disturbances and power grid impacts associated with the violent Sun-Earth connection events of 29–31 October 2003 and a comparative evaluation with other contemporary storms. Space Weather 3(8): S08C01. https://doi.org/10.1029/2004SW000128. [CrossRef] [Google Scholar]
- Kisabeth JL, Rostoker G. 1974. The expansive phase of magnetospheric substorms: 1. Development of the auroral electrojets and auroral arc configuration during a substorm. J Geophys Res 79(7): 972–984. https://doi.org/10.1029/ja079i007p00972. [Google Scholar]
- Lanzerotti LJ, Lee LC, Maclennan CG, Wolfe A, Medford LV. 1986. Possible evidence of flux transfer events in the polar ionosphere. Geophys Res Lett 13(11): 1089–1092. https://doi.org/10.1029/GL013i011p01089. [Google Scholar]
- Lanzerotti LJ, Konik RM, Wolfe A, Venkatesan D, Maclennan CG. 1991. Cusp latitude magnetic impulse events: 1. Occurrence statistics. J Geophys Res: Space Phys 96(A8): 14,009–14,022. https://doi.org/10.1029/91ja00567. [Google Scholar]
- Lundstedt H. 2006. The sun, space weather and GIC effects in Sweden. Adv Space Res 37(6): 1182–1191. https://doi.org/10.1016/j.asr.2005.10.023. [Google Scholar]
- McPherron RL, Russell CT, Aubry MP. 1973. Satellite studies of magnetospheric substorms on August 15, 1968: 9. Phenomenological model for substorms. J Geophys Res 78(16): 3131–3149. https://doi.org/10.1029/ja078i016p03131. [Google Scholar]
- Moretto T, Sibeck DG, Watermann JF. 2004. Occurrence statistics of magnetic impulsive events. Ann Geophys 22(2): 585–602. https://doi.org/10.5194/angeo-22-585-2004. [Google Scholar]
- Newell PT, Gjerloev JW. 2011. Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. J Geophys Res: Space Phys 116(A12): 12211. https://doi.org/10.1029/2011JA016779. [Google Scholar]
- Ngwira CM, Pulkkinen AA, Bernabeu E, Eichner J, Viljanen A, Crowley G. 2015. Characteristics of extreme geoelectric fields and their possible causes: Localized peak enhancements. Geophys Res Lett 42(17): 6916–6921. https://doi.org/10.1002/2015GL065061. [CrossRef] [Google Scholar]
- Pulkkinen A, Thomson A, Clarke E, McKay A. 2003. April 2000 geomagnetic storm: Ionospheric drivers of large geomagnetically induced currents. Ann Geophys 21(3): 709–717. https://doi.org/10.5194/angeo-21-709-2003. [CrossRef] [Google Scholar]
- Rodger CJ, Clilverd MA, Mac Manus DH, Martin I, Dalzell M, et al. 2020. Geomagnetically induced currents and harmonic distortion: Storm-time observations from New Zealand. Space Weather 18(3): e2019SW002,387. https://doi.org/10.1029/2019SW002387. [Google Scholar]
- Stauning P. 2013. Power grid disturbances and polar cap index during geomagnetic storms. J Space Weather Space Clim 3: A22. https://doi.org/10.1051/swsc/2013044. [Google Scholar]
- Untiedt J, Baumjohann W. 1993. Studies of polar current systems using the IMS Scandinavian magnetometer array. Space Sci Rev 63(3–4): 245–390. https://doi.org/10.1007/BF00750770. [Google Scholar]
- Wait JR. 1982. Geo-electromagnetism, Academic Press, New York, NY. ISBN 0127308806. https://doi.org/10.1016/B978-0-12-730880-7.X5001-7. [Google Scholar]
- Zou S, Lyons LR, Nicolls MJ, Heinselman CJ, Mende SB. 2009. Nightside ionospheric electrodynamics associated with substorms: PFISR and THEMIS ASI observations. J Geophys Res: Space Phys 114(12): 1–24. https://doi.org/10.1029/2009JA014259. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.