Open Access
Issue |
J. Space Weather Space Clim.
Volume 11, 2021
|
|
---|---|---|
Article Number | 43 | |
Number of page(s) | 17 | |
DOI | https://doi.org/10.1051/swsc/2021024 | |
Published online | 13 August 2021 |
- Andalsvik YL, Jacobsen KS. 2014. Observed high-latitude GNSS disturbances during a less-than-minor geomagnetic storm. Rad Sci 49(12): 1277–1288. https://doi.org/10.1002/2014RS005418. [CrossRef] [Google Scholar]
- Basu S, Groves K, Quinn J, Doherty P. 1999. A comparison of TEC fluctuations and scintillations at Ascension Island. J Atmos Sol-Terr Phys 61(16): 1219–1226. https://doi.org/10.1016/S1364-6826(99)00052-8. [CrossRef] [Google Scholar]
- Bertiger W, Desai SD, Haines B, Harvey N, Moore AW, Owen S, Weiss JP. 2010. Single receiver phase ambiguity resolution with GPS data. J Geodesy 84(5): 327–337. https://doi.org/10.1007/s00190-010-0371-9. [CrossRef] [Google Scholar]
- Cai C, Liu Z, Xia P, Dai W. 2013. Cycle slip detection and repair for undifferenced GPS observations under high ionospheric activity. GPS Solut 17: 247–260. https://doi.org/10.1007/s10291-012-0275-7. [CrossRef] [Google Scholar]
- Carrano CS, Groves KM, Rino CL. 2019. On the relationship between the rate of change of total electron content index (ROTI), irregularity strength (C k L), and the scintillation index (S4). J Geophys Res: Space Phys 124(3): 2099–2112. https://doi.org/10.1029/2018JA026353. [CrossRef] [Google Scholar]
- Cherniak I, Zakharenkova I, Redmon RJ. 2015. Dynamics of the high-latitude ionospheric irregularities during the 17 March 2015 St. Patrick’s Day storm: Ground-based GPS measurements. Space Weather 13: 585–597. https://doi.org/10.1002/2015SW001237. [CrossRef] [Google Scholar]
- Cousins EDP, Shepherd SG. 2010. A dynamical model of high-latitude convection derived from SuperDARN plasma drift measurements. J Geophys Res: Space Phys 115(A12): 1–12. https://doi.org/10.1029/2010JA016017. [Google Scholar]
- Cowley SWH. 2000. Magnetosphere-ionosphere interactions: A tutorial review. In: Magnetospheric current systems. Ohtani S-I, Fujii R, Hesse M, Lysak RL (Eds). AGU, Washington, DC, vol. 118, pp. 91–106. ISBN 9781118669006. https://doi.org/10.1029/GM118p0091 [CrossRef] [Google Scholar]
- Fabbro V, Jacobsen KS, Rougerie S. 2019. HAPEE, a prediction model of ionospheric scintillation in polar region. In: 3th European Conference on Antennas and Propagation (EuCAP), April 2019, Krakow, Poland. https://ieeexplore.ieee.org/document/8740307, pp. 1–5. [Google Scholar]
- Ghobadi H, Spogli L, Alfonsi L, Cesaroni C, Cicone A, Linty N, Romano V, Cafaro M. 2020. Disentangling ionospheric refraction and diffraction effects in GNSS raw phase through fast iterative filtering technique. GPS Solutions 24(3): 1–13. https://doi.org/10.1007/s10291-020-01001-1. [Google Scholar]
- Hu S, Bhattacharjee A, Hou J, Sun B, Roesler D, Frierdich S, Gibbs N, Whited J. 1998. Ionospheric storm forecast for high-frequency communications. Rad Sci 33(Sept–Oct): 1413–1428. https://doi.org/10.1029/98RS02219. [Google Scholar]
- Jacobsen KS, Dähnn M. 2014. Statistics of ionospheric disturbances and their correlation with GNSS positioning errors at high latitudes. J Space Weather Space Clim 4: A27. https://doi.org/10.1051/swsc/2014024. [CrossRef] [EDP Sciences] [Google Scholar]
- Jacobsen KS, Schäfer S. 2012. Observed effects of a geomagnetic storm on an RTK positioning network at high latitudes. J Space Weather Space Clim 2: A13. https://doi.org/10.1051/swsc/2012013. [Google Scholar]
- Jacobsen KS, Andalsvik YL. 2016. Overview of the 2015 St. Patricks day storm and its consequences for RTK and PPP positioning in Norway. J Space Weather Space Clim 6: A9. https://doi.org/10.1051/swsc/2016004. [CrossRef] [Google Scholar]
- Jin Y, Oksavik K. 2018. GPS scintillations and losses of signal lock at high latitudes during the 2015 St. Patrick’s day storm. J Geophys Res: Space Phys 123(9): 7943–7957. https://doi.org/10.1029/2018JA025933. [Google Scholar]
- Jin Y, Moen JI, Oksavik K, Spicher A, Clausen LBN, Miloch WJ. 2017. GPS scintillations associated with cusp dynamics and polar cap patches. J Space Weather Space Clim 7: A23. https://doi.org/10.1051/swsc/2017022. [CrossRef] [Google Scholar]
- Kouba J, Héroux P. 2001. Precise point positioning using IGS orbit and clock products. GPS Solut 5(2): 12–28. https://doi.org/10.1007/PL00012883. [Google Scholar]
- Koutroumbas K, Tsagouri I, Belehaki A. 2008. Time series autoregression technique implemented on-line in DIAS system for ionospheric forecast over Europe. Ann Geophys 26(2): 371–386. https://doi.org/10.5194/angeo-26-371-2008, https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2010JA015529. [CrossRef] [Google Scholar]
- Liu Z. 2011. A new automated cycle slip detection and repair method for a single dual-frequency GPS receiver. J Geod 85: 171–183. https://doi.org/10.1007/s00190-010-0426-y. [CrossRef] [Google Scholar]
- Lui ATY, Perreault P, Akasofu SI, Anger CD. 1973. The diffuse aurora. Planet Space Sci 21(5): 857–858. https://doi.org/10.1016/0032-0633(73)90102-5. [Google Scholar]
- McCaffrey AM, Jayachandran PT. 2019. Determination of the refractive contribution to GPS phase scintillation. J Geophys Res: Space Phys 124(2): 1454–1469. https://doi.org/10.1029/2018JA025759. [Google Scholar]
- McGranaghan RM, Mannucci AJ, Wilson B, Mattmann CA, Chadwick R. 2018. New capabilities for prediction of high-latitude ionospheric scintillation: A novel approach with machine learning. Space Weather 16(11): 1817–1846. https://doi.org/10.1029/2018SW002018. [CrossRef] [Google Scholar]
- McPherron RL, Siscoe G. 2004. Probabilistic forecasting of geomagnetic indices using solar wind air mass analysis. Space Weather 2(1): S01001. https://doi.org/10.1029/2003SW000003. [Google Scholar]
- Melbourne W. 1985. The case for ranging in GPS-based geodetic systems. In: Proceedings, First International Symposium on Precise Positioning with the Global Positioning System, Rockville, Maryland, April 15–19, 1985, pp. 373–386. https://ci.nii.ac.jp/naid/10003710300/en/. [Google Scholar]
- Moreno B, Radicella S, Lacy MC, Herraiz M, Rodriguez-Caderot G. 2011. On the effects of the ionospheric disturbances on precise point positioning at equatorial latitudes. GPS Solut 15(4): 381–390. https://doi.org/10.1007/s10291-010-0197-1. [Google Scholar]
- Mushini SC, Jayachandran PT, Langley RB, MacDougall JW, Pokhotelov D. 2012. Improved amplitude- and phase-scintillation indices derived from wavelet detrended high-latitude GPS data. GPS Solut 16(3): 363–373. https://doi.org/10.1007/s10291-011-0238-4. [CrossRef] [Google Scholar]
- Newell PT, Liou K, Zhang Y, Sotirelis T, Paxton LJ, Mitchell EJ. 2014. OVATION Prime-2013: Extension of auroral precipitation model to higher disturbance levels. Space Weather 12: 368–379. https://doi.org/10.1002/2014SW001056. [CrossRef] [Google Scholar]
- Newell PT, Sotirelis T, Liou K, Lee AR, Wing S, Green J, Redmon R. 2010. Predictive ability of four auroral precipitation models as evaluated using Polar UVI global images. Space Weather 8(August): 1–9. https://doi.org/10.1029/2010SW000604. [Google Scholar]
- Newell PT, Sotirelis T, Liou K, Meng C, Rich FJ. 2007. A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J Geophys Res: Space Phys 112(A1): A01206. https://doi.org/10.1029/2006JA012015. [Google Scholar]
- Pi X, Mannucci AJ, Lindqwister UJ, Ho CM. 1997. Monitoring of global ionospheric irregularities using the Worldwide GPS Network. Geophys Res Lett 24(18): 2283–2286. https://doi.org/10.1029/97GL02273. [CrossRef] [Google Scholar]
- Poppe BB. 2000. New scales help public, technicians understand space weather. Eos, Trans Am Geophys Union 81(29): 322–328. https://doi.org/10.1029/00EO00247. [Google Scholar]
- Prikryl P, Jayachandran PT, Mushini SC, Richardson IG. 2012. Toward the probabilistic forecasting of high-latitude GPS phase scintillation. Space Weather 10(8): S08005. https://doi.org/10.1029/2012SW000800. [CrossRef] [Google Scholar]
- Prikryl P, Sreeja V, Aquino M, Jayachandran PT. 2013. Probabilistic forecasting of ionospheric scintillation and GNSS receiver signal tracking performance at high latitudes. Ann Geophys 56(2): R0222. https://doi.org/10.4401/ag-6219. [Google Scholar]
- Rino C, Morton Y, Breitsch B, Carrano C. 2019. Stochastic TEC structure characterization. J Geophys Res: Space Phys 124(12): 10571–10579. https://doi.org/10.1029/2019JA026958. [Google Scholar]
- Romeo M, Da Costa V, Bardou F. 2003. Broad distribution effects in sums of lognormal random variables. Eur Phys J B 32(4): 513–525. https://doi.org/10.1140/epjb/e2003-00131-6. [EDP Sciences] [Google Scholar]
- Shepherd SG. 2014. Altitude-adjusted corrected geomagnetic coordinates: Definition and functional approximations. J Geophys Res: Space Phys 119(9): 7501–7521. https://doi.org/10.1002/2014JA020264. [Google Scholar]
- Sigernes F, Dyrland M, Brekke P, Chernouss S, Lorentzen DA, Oksavik K, Deehr CS. 2011. Two methods to forecast auroral displays. J Space Weather Space Clim 1(1): A03. https://doi.org/10.1051/swsc/2011003. [CrossRef] [Google Scholar]
- Starkov GV. 1994a. Mathematical model of the auroral boundaries. Geomagn Aeron 34(3): 331–336. [Google Scholar]
- Starkov GV. 1994b. Statistical dependences between the magnetic activity indices. Geomagn Aeron 34(1): 101–103. [Google Scholar]
- Tiwari R, Bhattacharya S, Purohit PK, Gwal AK. 2009. Effect of TEC variation on GPS precise point at low latitude. Open Atmos Sci J 3: 1–12. https://doi.org/10.2174/1874282300903010001. [Google Scholar]
- Tsagouri I, Belehaki A. 2015. Ionospheric forecasts for the European region for space weather applications. J Space Weather Space Clim 5: A9. https://doi.org/10.1051/swsc/2015010. [Google Scholar]
- van der Meeren C, Oksavik K, Lorentzen DA, Rietveld MT, Clausen LBN. 2015. Severe and localized GNSS scintillation at the poleward edge of the nightside auroral oval during intense substorm aurora. J Geophys Res: Space Phys 120(12): 10607–10621. https://doi.org/10.1002/2015JA021819. [Google Scholar]
- Wübbena G. 1985. Software developments for geodetic positioning with GPS using TI 4100 code and carrier measurements. In: Proceedings, First International Symposium on Precise Positioning with the Global Positioning System, Rockville, Maryland, April 15–19, 1985, pp. 403–412. https://ci.nii.ac.jp/naid/10010660316/en/. [Google Scholar]
- Yang Z, Liu Z. 2016. Correlation between ROTI and Ionospheric Scintillation Indices using Hong Kong low-latitude GPS data. GPS Solut 20: 815–824. https://doi.org/10.1007/s10291-015-0492-y. [Google Scholar]
- Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH. 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res: Solid Earth 102(B3): 5005–5017. https://doi.org/10.1029/96JB03860. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.