Open Access
Issue |
J. Space Weather Space Clim.
Volume 11, 2021
|
|
---|---|---|
Article Number | 58 | |
Number of page(s) | 28 | |
DOI | https://doi.org/10.1051/swsc/2021042 | |
Published online | 08 December 2021 |
- Afraimovich EL, Ding F, Kiryushkin V, Astafyeva E, Jin SG, Sankov V. 2010. TEC response to the 2008 Wenchuan earthquake in comparison with other strong earthquakes. Int J Remote Sens 31(13): 3601–3613. https://doi.org/10.1080/01431161003727747. [CrossRef] [Google Scholar]
- Akhoondzadeh M. 2019. Seismo-magnetic field anomalies detection using Swarm Satellites (Alpha, Bravo and Charlie). Int Arch Photogramm Remote Sens Spatial Inf Sci XLII-4/W18: 45–49. https://doi.org/10.5194/isprs-archives-XLII-4-W18-45-2019. [CrossRef] [Google Scholar]
- Akhoondzadeh M, Parrot M, Saradjian MR. 2010. Electron and ion density variations before strong earthquakes (M > 6.0) using DEMETER and GPS data. Nat Hazards Earth Syst Sci 10(1): 7–18. https://doi.org/10.5194/nhess-10-7-2010. [CrossRef] [Google Scholar]
- Anagnostopoulos G, Vassiliadis E, Pulinets S. 2012. Characteristics of flux-time profiles, temporal evolution, and spatial distribution of radiation-belt electron precipitation bursts in the upper ionosphere before great and giant earthquakes. Ann Geophys 55: 21–36. [CrossRef] [Google Scholar]
- Artru J, Farges T, Lognonné P. 2004. Acoustic waves generated from seismic surface waves: propagation properties determined from Doppler sounding observations and normal-mode modelling. Geophys J Int 158(3): 1067–1077. https://doi.org/10.1111/j.1365-246X.2004.02377.x. [CrossRef] [Google Scholar]
- Artru J, Dučić V, Kanamori H, Lognonné P, Murakami M. 2005. Ionospheric detection of gravity waves induced by tsunamis. Geophys J Int 160(3): 840–848. https://doi.org/10.1111/j.1365-246X.2005.02552.x. [CrossRef] [Google Scholar]
- Astafyeva E, Shults K. 2019. Ionospheric GNSS imagery of seismic source: possibilities, difficulties, and challenges. J Geophys Res Space Phys 124: 534–543. https://doi.org/10.1029/2018JA026107. [CrossRef] [Google Scholar]
- Astafyeva E, Shalimov S, Olshanskaya E, Lognonne P. 2013. Ionospheric response to earthquakes of different magnitudes: larger quakes perturb the ionosphere stronger and longer. Geophys Res Lett 40: 1675–1681. https://doi.org/10.1002/grl.50398. [CrossRef] [Google Scholar]
- Azeem I, Vadas SL, Crowley G, Makela JJ. 2017. Traveling ionospheric disturbances over the United States induced by gravity waves from the 2011 Tohoku tsunami and comparison with gravity wave dissipative theory. J Geophys Res Space Phys 122: 3430–3447. https://doi.org/10.1002/2016JA023659. [CrossRef] [Google Scholar]
- Belehaki A, Tsagouri I, Paouris E. 2021. Characteristics of the effective scale height in the topside ionosphere extracted from Swarm A and Digisonde observations [Preprint]. https://doi.org/10.1002/essoar.10508484.2. [Google Scholar]
- Chou M-Y, Cherniak I, Lin CCH, Pedatella NM. 2020. The persistent ionospheric responses over Japan after the impact of the 2011 Tohoku earthquake. Space Weather 18: e2019SW002302. https://doi.org/10.1029/2019SW002302. [Google Scholar]
- Chum J, Liu JY, Laštovička J, Fišer J, Mošna Z, Baše J, Sun YY. 2016. Ionospheric signatures of the April 25, 2015 Nepal earthquake and the relative role of compression and advection for Doppler sounding of infrasound in the ionosphere. Earth Planets Space 68: 24. https://doi.org/10.1186/s40623-016-0401-9. [CrossRef] [Google Scholar]
- Coisson P, Lognonné P, Walwer D, Rolland LM. 2015. First tsunami gravity wave detection in ionospheric radio occultation data. Earth Space Sci 2: 125–133. https://doi.org/10.1002/2014EA000054. [CrossRef] [Google Scholar]
- De Santis A, Marchetti D, Pavón-Carrasco FJ, Cianchini G, Perrone L, et al. 2019. Precursory worldwide signatures of earthquake occurrences on Swarm satellite data. Sci Rep 9: 20287. https://doi.org/10.1038/s41598-019-56599-1. [CrossRef] [Google Scholar]
- Diego P, Coco I, Bertello I, Candidi M, Ubertini P. 2019. Ionospheric plasma density measurements by Swarm Langmuir probes: limitations and possible corrections. Ann Geophys Discuss. https://doi.org/10.5194/angeo-2019-136. [Google Scholar]
- Dučić V, Artru J, Lognonné P. 2003. Ionospheric remote sensing of the Denali Earthquake Rayleigh surface waves. Geophys Res Lett 30(18): 1951. https://doi.org/10.1029/2003GL017812. [Google Scholar]
- Eltrass A, Mahmoudian A, Scales WA, de Larquier S, Ruohoniemi JM, Baker JBH, Greenwald RA, Erickson PJ. 2014. Investigation of the temperature gradient instability as the source of midlatitude quiet time decameter-scale ionospheric irregularities: 2. Linear analysis. J Geophys Res Space Phys 119: 4882–4893. https://doi.org/10.1002/2013JA019644. [CrossRef] [Google Scholar]
- Eltrass A, Scales WA, Erickson PJ, Ruohoniemi JM, Baker JBH. 2016. Investigation of the role of plasma wave cascading processes in the formation of midlatitude irregularities utilizing GPS and radar observations. Radio Sci 51: 836–851. https://doi.org/10.1002/2015RS005790. [CrossRef] [Google Scholar]
- Galkin IA, Khmyrov GM, Kozlov A, Reinisch BW, Huang X, Kitrosser DF. 2006. Ionosonde networking, databasing, and Web serving. Radio Sci 41: RS5S33. https://doi.org/10.1029/2005RS003384. [CrossRef] [Google Scholar]
- Galvan DA, Komjathy A, Hickey MP, Stephens P, Snively J, Tony Song Y, Butala MD, Mannucci AJ. 2012. Ionospheric signatures of Tohoku-Oki tsunami of March 11, 2011: Model comparisons near the epicenter. Radio Sci 47(4): RS4003. https://doi.org/10.1029/2012RS005023. [CrossRef] [Google Scholar]
- Gamache RR, Galkin IA, Reinisch BW. 1996. A database record structure for Ionogram Data. Rep. UMLCAR 96-01, Cent. for Atmos. Res., Univ. of Mass.-Lowell, Lowell, MA. [Google Scholar]
- Garcia R, Crespon F, Ducic V, Lognonne P. 2005. Three-dimensional ionospheric tomography of post-seismic pertubations produced by the Denali earthquake from GPS data. Geophys J Int 163: 1049–1064. https://doi.org/10.1111/j.1365-246X.2005.02775.x. [CrossRef] [Google Scholar]
- Garcia RF, Doornbos E, Bruinsma S, Hebert H. 2014. Atmospheric gravity waves due to the Tohoku-Oki tsunami observed in the thermosphere by GOCE. J Geophys Res Atmos 119: 4498–4506. https://doi.org/10.1002/2013JD021120. [CrossRef] [Google Scholar]
- Goto SI, Uchida R, Igarashi K, Chen CH, Kao M, Umeno K. 2019. Preseismic ionospheric anomalies detected before the 2016 Taiwan earthquake. J Geophys Res Space Phys 124: 9239–9252. https://doi.org/10.1029/2019JA026640. [CrossRef] [Google Scholar]
- Grawe MA, Makela JJ. 2017. Observation of tsunami-generated ionospheric signatures over hawaii caused by the 16 september 2015 illapel earthquake. J Geophys Res Space Phys 122(1): 1128–1136. https://doi.org/10.1002/2016JA023228. [CrossRef] [Google Scholar]
- Harris FJ. 1978. On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform. Proc IEEE 66: 66–67. https://doi.org/10.1109/PROC.1978.10837. [Google Scholar]
- He L, Heki K. 2016. Three-dimensional distribution of ionospheric anomalies prior to three large earthquakes in Chile. Geophys Res Lett 43: https://doi.org/10.1002/2016GL069863. [Google Scholar]
- Heki K, Enomoto Y. 2013. Preseismic ionospheric electron enhancements revisited. J Geophys Res Space Phys 118: 6618–6626. https://doi.org/10.1002/jgra.50578. [CrossRef] [Google Scholar]
- Heki K, Ping J. 2005. Directivity and apparent velocity of the co-seismic ionospheric disturbances observed with a dense GPS array. Earth Planet Sci Lett 236(3): 845–855. https://doi.org/10.1016/j.epsl.2005.06.010. [CrossRef] [Google Scholar]
- Heki K, Otsuka Y, Choosakul N, Hemmakorn N, Komolmis T, Maruyama T. 2006. Detection of ruptures of Andaman fault segments in the 2004 great Sumatra earthquake with coseismic ionospheric disturbances. J Geophys Res Solid Earth 111(B9): B09313. https://doi.org/10.1029/2005JB004202. [CrossRef] [Google Scholar]
- Hernández-Pajares M, Juan JM, Sanz J, Solé JG. 1998. Global observation of the ionospheric electronic response to solar events using ground and LEO GPS data. J Geophys Res Space Phys 103(A9): 20789–20796. https://doi.org/10.1029/98JA01272. [CrossRef] [Google Scholar]
- Hernández-Pajares M, Juan JM, Sanz J. 1999. New approaches in global ionospheric determination using ground GPS data. J Atmos Sol Terr Phys 61(16): 1237–1247. https://doi.org/10.1016/S1364-6826(99)00054-1. [CrossRef] [Google Scholar]
- Hernández-Pajares M, Juan JM, Sanz J. 2006. Medium-scale traveling ionospheric disturbances affecting GPS measurements: Spatial and temporal analysis. J Geophys Res Space Phys 111:A7. https://doi.org/10.1029/2005JA011474. [CrossRef] [Google Scholar]
- Hernández-Pajares M, Juan JM, Sanz J, Aragón-Ànge À, García-Rigo A, Salazar D, Escudero M. 2011. The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques. J Geod 85(12): 887–907. https://doi.org/10.1007/s00190-011-0508-5. [CrossRef] [Google Scholar]
- Hernández-Pajares M, Juan JM, Sanz J, Aragón-Àngel A. 2012. Propagation of medium scale traveling ionospheric disturbances at different latitudes and solar cycle conditions. Radio Sci 47: RS0K05. https://doi.org/10.1029/2011RS004951. [Google Scholar]
- Hernández-Pajares M, Lyu H, Garcia-Fernandez M, Orus-Perez R. 2020. A new way of improving global ionospheric maps by ionospheric tomography: consistent combination of multi-GNSS and multi-space geodetic dual-frequency measurements gathered from vessel-, LEO-and ground-based receivers. J Geod 94(8): 1–16. https://doi.org/10.1007/s00190-020-01397-1. [CrossRef] [Google Scholar]
- Hines C. 1972. Gravity waves in the atmosphere. Nature 239: 73–78. https://doi.org/10.1038/239073a0. [CrossRef] [Google Scholar]
- Huang X, Reinisch BW. 1996. Vertical electron density profiles from Digisonde ionograms: The average representative profile. Ann Geophys XXXIX(4): 751–756. https://doi.org/10.4401/ag-4010. [Google Scholar]
- Huang X, Reinisch BW. 2001. Vertical electron content from ionograms in real time. Radio Sci 36(2): 335–342. https://doi.org/10.1029/1999RS002409. [CrossRef] [Google Scholar]
- Ibanga JI, Akpan AE, George NJ, Ekanem AM, George AM. 2018. Unusual ionospheric variations before the strong Auckland Islands, New Zealand earthquake of 30th September, 2007. NRIAG J Astron Geophys 7: 149–154. https://doi.org/10.1016/j.nrjag.2017.12.007. [CrossRef] [Google Scholar]
- Jin SG, Jin R, Li JH. 2014. Pattern and evolution of seismo-ionospheric disturbances following the 2011 Tohoku earthquakes from GPS observations. J Geophys Res Space Phys 119(9): 7914–7927. https://doi.org/10.1002/2014JA019825. [CrossRef] [Google Scholar]
- Jin S, Jin R, Liu X. 2019. GNSS atmospheric seismology: Theory, observations and modeling. Springer, Singapore. pp. 315. https://doi.org/10.1007/978-981-10-3178-6_9. [Google Scholar]
- Jin SG, Occhipinti G, Jin R. 2015. GNSS ionospheric seismology: Recent observations evidences and characteristics. Earth Sci Rev 147: 54–64. https://doi.org/10.1016/j.earscirev.2015.05.003. [CrossRef] [Google Scholar]
- Jin SG, Zhu W, Afraimovich E. 2010. Co-seismic ionospheric and deformation signals on the 2008 magnitude 8.0 Wenchuan Earthquake from GPS observations. Int J Remote Sens 31(13): 3535–3543. https://doi.org/10.1080/01431161003727739. [CrossRef] [Google Scholar]
- Ke F, Wang Y, Wang X, Qian H, Shi C. 2016. Statistical analysis of seismo-ionospheric anomalies related to Ms > 5.0 earthquakes in China by GPS TEC. J Seismol 20: 137–149. https://doi.org/10.1007/s10950-015-9516-x. [CrossRef] [Google Scholar]
- Komjathy A, Galvan DA, Stephens P, Butala M, Akopian V, Wilson B, Verkhoglyadova O, Mannucci AJ, Hickey M. 2012. Detecting ionospheric TEC perturbations caused by natural hazards using a global network of GPS receivers: The Tohoku case study. Earth Planet Space 64: 1287–1294. https://doi.org/10.5047/eps.2012.08.003. [CrossRef] [Google Scholar]
- Krypiak-Gregorczyk A, Wielgosz P. 2018. Carrier phase bias estimation of geometry-free linear combination of GNSS signals for ionospheric TEC modeling. GPS Solut 22: 45. https://doi.org/10.1007/s10291-018-0711-4. [CrossRef] [Google Scholar]
- Kuo FS, Chou SY, Shan SJ. 1998. Comparison of topside and bottomside irregularities in equatorial F region ionosphere. J Geophys Res 103(A2): 2193–2199. https://doi.org/10.1029/97JA02586. [CrossRef] [Google Scholar]
- Le H, Liu JY, Liu L. 2011. A statistical analysis of ionospheric anomalies before 736 M6.0+ earthquakes during 2002–2010. J Geophys Res 116: A02303. https://doi.org/10.1029/2010ja015781. [Google Scholar]
- Li M, Parrot M. 2013. Statistical analysis of an ionospheric parameter as a base for earthquake prediction. J Geophys Res Space Phys AGU/Wiley 118: 3731–3739. https://doi.org/10.1002/jgra.50313. [CrossRef] [Google Scholar]
- Liu JY, Chuo YJ, Shan SJ, Tsai YB, Chen YI, Pulinets SA, Yu SB. 2004. Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements. Ann Geophys 22(5): 1585–1593. https://doi.org/10.5194/angeo-22-1585-2004. [CrossRef] [Google Scholar]
- Liu JY, Chen YI, Chuo YJ, Chen CS. 2006a. A statistical investigation of pre earthquake ionospheric anomaly. J Geophys Res 111: A05304. https://doi.org/10.1029/2005JA011333. [Google Scholar]
- Liu JY, Tsai YB, Ma KF, Chen YI, Tsai HF, Lin CH, Kamogawa M, Lee CP. 2006b. Ionospheric GPS total electron content (TEC) disturbances triggered by the 26 December 2004 Indian Ocean Tsunami. J Geophys Res Space Phys 111(A5): https://doi.org/10.1029/2005JA011200. [Google Scholar]
- Liu JY, Sun YY. 2011. Seismo-traveling ionospheric disturbances of ionograms observed during the 2011 Mw 9.0 Tohoku Earthquake. Earth Planet Space 63: 70. https://doi.org/10.5047/eps.2011.05.017. [Google Scholar]
- Liu JY, Chen CH, Lin CH, Tsai HF, Chen CH, Kamogawa M. 2011. Ionospheric disturbances triggered by the 11 March 2011 M9.0 Tohoku earthquake (1978–2012). J Geophys Res Space Phys 116(A6): A06319. https://doi.org/10.1029/2011JA016761. [Google Scholar]
- Liu (Tiger) JY, Hattori K, Chen YI. 2018. Application of Total Electron Content derived from the Global Navigation Satellite System for Detecting Earthquake PrecursorsIn: Pre-Earthquake Processes, Ouzounov D, Pulinets S, Hattori K, Taylor P (Eds.), American Geophysical Union (AGU)/John Wiley & Sons Inc. https://doi.org/10.1002/9781119156949.ch17. [Google Scholar]
- Liu JY, Lin CY, Chen YI, Wu TR, Chung MJ, Liu TC, Tsai YL, Chang LC, Chao CK, Ouzounov DP, Hattori K. 2020. The source detection of September 28, 2018, Sulawesi tsunami by using ionospheric GNSS total electron content disturbance. Geosci Lett 7: 11. https://doi.org/10.1186/s40562-020-00160-w. [CrossRef] [Google Scholar]
- Liu C, Guan Y, Zheng X, Zhang A, Diego P, Sun Y. 2019. The technology of space plasma in-situ measurement on the China Seismo-Electromagnetic Satellite. Sci China Technol Sci 62: 829–838. https://doi.org/10.1007/s11431-018-9345-8. [CrossRef] [Google Scholar]
- Lognonné P, Artru J, Garcia R, Crespon F, Dučić V, Jeansou E, Occhipinti G, Helbert J, Moreaux G, Godet P. 2006. Ground-based GPS imaging of ionospheric postseismic signal. Planet Space Sci 54: 528–540. https://doi.org/10.1016/j.pss.2005.10.021. [CrossRef] [Google Scholar]
- Luo X, Xiong C, Gu S, Lou Y, Stolle C, Wan X, Liu K, Song W. 2019. Geomagnetically conjugate observations of equatorial plasma irregularities from Swarm constellation and ground-based GPS stations. J Geophys Res Space Phys 124: 3650–3665. https://doi.org/10.1029/2019JA026515. [CrossRef] [Google Scholar]
- Marchetti D, Akhoondzadeh M. 2018. Analysis of Swarm satellites data showing seismo-ionospheric anomalies around the time of the strong Mexico (Mw = 8.2) earthquake of 08 September 2017. Adv Space Res 62(3): 614–623. https://doi.org/10.1016/j.asr.2018.04.043. [CrossRef] [Google Scholar]
- Marchetti D, De Santis A, Jin S, Campuzano SA, Cianchini G, Piscini A. 2020a. Co-seismic magnetic field perturbations detected by Swarm Three-Satellite Constellation. Remote Sens 12: 1166. https://doi.org/10.3390/rs12071166. [CrossRef] [Google Scholar]
- Marchetti D, Santis AD, Shen X, Campuzano S, Perrone L, et al. 2020b. Possible Lithosphere-Atmosphere-Ionosphere Coupling effects prior to the 2018 Mw = 7.5 Indonesia earthquake from seismic, atmospheric and ionospheric data. J Asian Earth Sci 188: 104097. https://doi.org/10.1016/j.jseaes.2019.104097. [CrossRef] [Google Scholar]
- Maruyama T, Tsugawa T, Kato H, Saito A, Otsuka Y, Nishioka M. 2011. Ionospheric multiple stratifications and irregularities induced by the 2011 off the Pacific Coast of Tohoku Earthquake. Earth Planet Space 63(7): 65. https://doi.org/10.5047/eps.2011.06.008. [Google Scholar]
- Occhipinti G, Rolland L, Lognonné P, Watada S. 2013. From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes. J Geophys Res Space Phys 118(6): 3626–3636. https://doi.org/10.1002/jgra.50322. [CrossRef] [Google Scholar]
- Occhipinti G, Aden-Antoniow F, Bablet A, Molinie JP, Farges T. 2018. Surface waves magnitude estimation from ionospheric signature of Rayleigh waves measured by Doppler sounder and OTH radar. Nature Sci Rep 8: 1555. https://doi.org/10.1038/s41598-018-19305-1. [Google Scholar]
- Ouzounov D, Pulinets S, Hattori K, Taylor P (Eds). 2018. Pre-Earthquake Processes: A Multi-disciplinary Approach to Earthquake Prediction Studies. AGU. John Wiley & Sons Inc. pp. 385. https://doi.org/10.1002/9781119156949. [Google Scholar]
- Parrot M, Li M. 2018. Statistical analysis of the ionospheric density recorded by the DEMETER satellite during seismic activity, in: Pre‐Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies. Ouzounov D, Pulinets S, Hattori K, Taylor P, (Eds.) John Wiley & Sons – American Geophysical Union (AGU), Hoboken. pp. 319–328. 10.1002/9781119156949.ch18 [CrossRef] [Google Scholar]
- Perevalova NP, Sankov VA, Astafyeva EI, Zhupityaeva AS. 2014. Threshold magnitude for ionospheric TEC response to earthquakes. J Atmos Sol Terr Phys 108: 77–90. https://doi.org/10.1016/j.jastp.2013.12.014. [CrossRef] [Google Scholar]
- Píša D, Parrot M, Santolík O. 2011. Ionospheric density variations recorded before the 2010 Mw 8.8 earthquake in Chile. J Geophys Res Space Phys AGU/Wiley 116: A08309. https://doi.org/10.1029/2011JA016611. [Google Scholar]
- Pulinets SA, Boyarchuk KA, Hegai VV, Kim VP, Lomonosov AM. 2000. Quasielectrostatic Model of atmosphere-thermosphere-ionosphere coupling. Adv Space Res 26(8): 1209–1218. https://doi.org/10.1016/S0273-1177(99)01223-5. [CrossRef] [Google Scholar]
- Pulinets S, Davidenko D. 2014. Ionospheric precursors of earthquakes and Global Electric Circuit. Adv Space Res 53: 709–723. https://doi.org/10.1016/j.asr.2013.12.035. [CrossRef] [Google Scholar]
- Pulinets S, Ouzounov D. 2018. The possibility of earthquake forecasting: Learning from nature. IOP Publishing, 168 pp. https://iopscience.iop.org/book/978-0-7503-1248-6. [Google Scholar]
- Ravanelli M, Occhipinti G, Savastano G, Komjathy A, Shume EB, Crespi M. 2021. GNSS total variometric approach: first demonstration of a tool for real-time tsunami genesis estimation. Sci Rep 11: 3114. https://doi.org/10.1038/s41598-021-82532-6. [CrossRef] [Google Scholar]
- Reddy CD, Shrivastava MN, Seemala GK, González G, Baez JC. 2017. Ionospheric plasma response to Mw 8.3 Chile Illapel Earthquake on September 16, 2015. In: The Chile-2015 (Illapel) Earthquake and Tsunami. Braitenberg C, Rabinovich AB (Eds.), Springer, Cham, Switzerland. pp. 145–155. https://doi.org/10.1007/978-3-319-57822-4_12. [CrossRef] [Google Scholar]
- Rolland LM, Occhipinti G, Lognonné P, Loevenbruck A. 2010. Ionospheric gravity waves detected offshore Hawaii after tsunamis. Geophys Res Lett 37(17): https://doi.org/10.1029/2010GL044479. [Google Scholar]
- Rolland LM, Lognonné P, Astafyeva E, Kherani EA, Kobayashi N, Mann M, Munekane H. 2011. The resonant response of the ionosphere imaged after the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planet Space 63(7): 853–857. https://doi.org/10.5047/eps.2011.06.020. [CrossRef] [Google Scholar]
- Roma-Dollase D, Hernández-Pajares M, Krankowski A, Kotulak K, Ghoddousi-Fard R, et al. 2018. Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle. J Geod 92(6): 691–706. https://doi.org/10.1007/s00190-017-1088-9. [CrossRef] [Google Scholar]
- Ryu K, Lee E, Chae JS, Parrot M, Pulinets S. 2014. Seismo-ionospheric coupling appearing as equatorial electron density enhancements observed via DEMETER electron density measurements. J Geophys Res Space Phys 119: 8524–8542. https://doi.org/10.1002/2014JA020284. [CrossRef] [Google Scholar]
- Savastano G, Komjathy A, Verkhoglyadova O, Mazzoni A, Crespi M, Wei Y, Mannucci AJ. 2017. Real-time detection of tsunami ionospheric disturbances with a stand-alone GNSS receiver: a preliminary feasibility demonstration. Sci Rep 7: 46607. https://doi.org/10.1038/srep46607. [CrossRef] [Google Scholar]
- Schmidt M. 2001. Grundprinzipien der Wavelet-Analyse und Anwendungen in der Geodäsie. Habilitationsschrift, Shaker Verlag, Aachen. ISBN 978-3-8265-8872-3. [Google Scholar]
- Stanica DA, Stanica D, Błęcki J, Ernst T, Jóźwiak W, Słomiński J. 2018. Pre-seismic geomagnetic and ionosphere signatures related to the Mw 5.7 earthquake occurred in Vrancea zone on September 24, 2016. Acta Geophys 66: 167–177. https://doi.org/10.1007/s11600-018-0115-4. [CrossRef] [Google Scholar]
- Su YC, Liu JY, Chen SP, Tsai HF, Chen MQ. 2013. Temporal and spatial precursors in ionospheric total electron content of the 16 October 1999 Mw 7.1 Hector Mine earthquake. J Geophys Res Space Phys 118: 6511–6517. https://doi.org/10.1002/jgra.50586. [CrossRef] [Google Scholar]
- Sun YY. 2019. GNSS brings us back on the ground from ionosphere. Geosci Lett 6: 14. https://doi.org/10.1186/s40562-019-0144-0. [CrossRef] [Google Scholar]
- Tsugawa T, Saito A, Otsuka Y, Nishioka M, Maruyama T, Kato H, Nagatsuma T, Murata KT. 2011. Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planet Space 63(7): 875–879. https://doi.org/10.5047/eps.2011.06.035. [CrossRef] [Google Scholar]
- Tulasi Ram S, Sunil PS, Ravi Kumar M, Su S-Y, Tsai LC, Liu CH. 2017. Coseismic traveling ionospheric disturbances during the Mw 7.8 Gorkha, Nepal, Earthquake on 25 April 2015 from ground and spaceborne observations. J Geophys Res Space Phys 122: 10669–10685. https://doi.org/10.1002/2017JA023860. [Google Scholar]
- Venkatraman S, Heelis R. 2000. Interhemispheric plasma flows in the equatorial topside ionosphere. J Geophys Res 105(A8): 18457–18464. https://doi.org/10.1029/2000JA000012. [CrossRef] [Google Scholar]
- Yang YM, Meng X, Komjathy A, Verkholyadova O, Langley RB, Tsurutani BT, Mannucci AJ. 2014. Tohoku-Oki earthquake caused major ionospheric disturbances at 450 km altitude over Alaska. Radio Sci 49: 1206–1213. https://doi.org/10.1002/2014RS005580. [CrossRef] [Google Scholar]
- Yang H, Monte-Moreno E, Hernández-Pajares M. 2017. Multi-TID detection and characterization in a dense Global Navigation Satellite System receiver network. J Geophys Res Space Phys 122: 9554–9575. https://doi.org/10.1002/2017JA023988. [CrossRef] [Google Scholar]
- Yang H, Monte Moreno E, Hernández-Pajares M. 2019. ADDTID: An alternative tool for studying earthquake/tsunami signatures in the ionosphere. Case of the 2011 Tohoku earthquake. Remote Sens 11(16): 1894. https://doi.org/10.3390/rs11161894. [CrossRef] [Google Scholar]
- Zhang X, Shen X, Parrot M, Zeren Z, Ouyang X, Liu J, Qian J, Zhao S, Miao Y. 2012. Phenomena of electrostatic perturbations before strong earthquakes (2005–2010) observed on DEMETER. Nat Hazards Earth Syst Sci 12: 75–83. https://doi.org/10.5194/nhess-12-75-2012. [CrossRef] [Google Scholar]
- Zhu K, Li K, Mengxuan F, Chi C, Yu Z. 2019. Precursor analysis associated with the Ecuador earthquake using Swarm A and C satellite magnetic data based on PCA. IEEE Access 7: 93927–93936. https://doi.org/10.1109/ACCESS.2019.2928015. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.