Open Access
Technical Article
Issue
J. Space Weather Space Clim.
Volume 12, 2022
Article Number 29
Number of page(s) 13
DOI https://doi.org/10.1051/swsc/2022018
Published online 15 August 2022
  • Agapov VV, Marchenkov KV, Saenko VS, Sokolov AB. 2010. Method for determining the transformation coefficient converting surface structure currents into voltages in fragments of cable harnesses. RU Patent 2 378 657 C2. [Google Scholar]
  • Davis VA, Mandell MJ, Gardner BM, Mikellides IG, Neergaard Jacobs LF, Cooke DL, Minor J. 2004. Validation of NASCAP-2K Spacecraft-environment interactions calculations. [Google Scholar]
  • De Forest SE, Mc Jlwain GE. 1971. Plasma clouds in the magnetosphere. J. Geophys. Res. 76: 3587–3611. https://doi.org/10.1029/JA076i016p03587. [CrossRef] [Google Scholar]
  • Gaines EE, Nightingale RW, Imhof WL, Reagan JB. 1981. Enhanced Radiation Doses to High-Altitude Spacecraft during June 1980. IEEE Trans Nuclear Sci 28(6): 4502–4504. [CrossRef] [Google Scholar]
  • Garrett HB. 1981. The Charging of Spacecraft Surfaces. Rev Geophys 19(4): 577–616. ISSN: 87551209. https://doi.org/10.1029/RG019i004p00577. [CrossRef] [Google Scholar]
  • Garrett HB, Whittlesey AC. 2000. Spacecraft charging, an update. IEEE Trans Plasma Sci 28(6): 2017–2028. https://doi.org/10.1109/27.902229. [CrossRef] [Google Scholar]
  • Lai ST. 2011. Fundamentals of spacecraft charging: spacecraft interactions with space plasmas. Princeton University Press. pp. 272. ISBN 1400839092, 9781400839094. [Google Scholar]
  • Lui ATY. 2000. Tutorial on geomagnetic storms and substorms. IEEE Trans Plasma Sci 28(6): 1854–1866. https://doi.org/10.1109/27.902214. [CrossRef] [Google Scholar]
  • Marchenkov KV, Sokolov AB, Saenko VS, Pozhidaev ED. 2008. A new-generation ‘Satellite-MIEM’ software for calculation of interference in fragments of the cable network laid on the external surface of the space vehicle (in Russian). Proc Technol Electromagn Compat, Moscow, Russia 1: 39–44. [Google Scholar]
  • Purvis CK, Garrett HB, Whittlesey AC, Stevens NJ. 1984. Design guidelines for assessing and controlling spacecraft charging effects. Tech. Paper 2361, NASA, Washington, DC, USA, pp. 1–44. [Google Scholar]
  • Robinson PA, Holman Jr AB. 1977. Pioneer Venus spacecraft charging model. In: Proceedings of the Spacecraft Charging Technology Conference, February 1977, USA, pp. 297–308. [Google Scholar]
  • Rosen A. 1976a. Spacecraft charging by magnetospheric plasmas. IEEE Trans Nuclear Sci 23(6): Electronic ISSN: 1558-1578. https://doi.org/10.1109/TNS.1976.4328575. [Google Scholar]
  • Rosen A. 1976b. Spacecraft charging problems. physics of solar planetary environments. In: Proceedings of the International Symposium on Solar-Terrestrial Physics, June 7–18, 1976, Boulder, Colorado, Vol. II, pp. 1024–1038. https://doi.org/10.1029/SP008p1024. [Google Scholar]
  • Saenko VS, Tyutnev AP, Nikolski EV, Bakutov AE. 2015. Protection of the Spectr-R spacecraft against ESD effects using satellite-MIEM computer code IEEE Trans Plasma Sci 43(9): 2828–2831. https://doi.org/10.1109/TPS.2015.2403955. [CrossRef] [Google Scholar]
  • Sangiovanni-Vincentelli A, Bickart T. October, 1979. Bipartite graphs and an optimal bordered triangular form of a matrix. IEEE Trans Circuits Syst 26(10): 880–889. [CrossRef] [Google Scholar]
  • Tyutnev A, Saenko V, Ikhsanov R, Krouk E. 2019. Radiation-induced conductivity in polymers under pulsed and long-time small-signal irradiations combined to determine their step-function response. J Appl Phys 126(9): 095501. ISSN: 00218979. https://doi.org/10.1063/1.5109768. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.