Open Access
Issue |
J. Space Weather Space Clim.
Volume 12, 2022
|
|
---|---|---|
Article Number | 28 | |
Number of page(s) | 20 | |
Section | Agora | |
DOI | https://doi.org/10.1051/swsc/2022025 | |
Published online | 25 July 2022 |
- Adams SG. 2003. Building successful student teams in the engineering classroom. J STEM Educ: Innov Res 4(3): 1–6. [Google Scholar]
- Andriessen J, Baker M, Suthers DD. 2013. Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments, Vol. 1, Springer Science & Business Media, Dordrecht, Netherlands. [Google Scholar]
- Berdermann J, Kriegel M, Banyś D, Heymann F, Hoque MM, Wilken V, Borries C, Heßelbarth A, Jakowski N. 2018. Ionospheric response to the X9.3 Flare on 6 September 2017 and its implication for navigation services over Europe. Space Weather 16(10): 1604–1615. https://doi.org/10.1029/2018SW001933. [CrossRef] [Google Scholar]
- Bingham S, Murray SA, Guerrero A, Glover A, Thorn P. 2019. Summary of the plenary sessions at European Space Weather Week 15: Space weather users and service providers working together now and in the future. J Space Weather Space Clim 9: A32. https://doi.org/10.1051/swsc/2019031. [CrossRef] [EDP Sciences] [Google Scholar]
- Burt J, Smith B. 2012. Deep space climate observatory: The DSCOVR mission. In: 2012 IEEE Aerospace Conference, Big Sky, MT, USA, 03–10 March 2012, IEEE, pp. 1–13. https://doi.org/10.1109/AERO.2012.6187025. [Google Scholar]
- Cade WB III. 2013. The first recorded space weather impact? Space Weather 11(9): 489–489. https://doi.org/10.1002/swe.20091. [CrossRef] [Google Scholar]
- Clilverd MA, Rodger CJ, Brundell JB, Dalzell M, Martin I, Mac Manus DH, Thomson NR, Petersen T, Obana Y. 2018. Long-lasting geomagnetically induced currents and harmonic distortion observed in New Zealand during the 7–8 September 2017 disturbed period. Space Weather 16(6): 704–717. https://doi.org/10.1029/2018SW001822. [CrossRef] [Google Scholar]
- Damas MC, Ngwira CM, Cheung TD, Marchese P, Kuznetsova M, Zheng Y, Chulaki A, Mohamed A. 2020. A model of an integrated research and education program in space weather at a Community College. Space Weather 18(1): e2019SW002,307. https://doi.org/10.1029/2019SW002307. [CrossRef] [Google Scholar]
- Dimmock AP, Rosenqvist L, Hall J-O, Viljanen A, Yordanova E, Honkonen I, André M, Sjöberg EC. 2019. The GIC and geomagnetic response over Fennoscandia to the 7–8 September 2017 geomagnetic storm. Space Weather 17(7): 989–1010. https://doi.org/10.1029/2018SW002132. [Google Scholar]
- Domingo V, Fleck B, Poland AI. 1995. The SOHO mission: An overview. Sol Phys 162(1): 1–37. https://doi.org/10.1007/BF00733425. [CrossRef] [Google Scholar]
- Donnelly RF, Grubb R, Cowley F. 1977. Solar X-ray measurements from SMS-1, SMS-2, and GOES-1, information for data users. NASA STI/Recon Tech Rep N 78: 13,992. [Google Scholar]
- Eastwood JP, Biffis E, Hapgood MA, Green L, Bisi MM, Bentley RD, Wicks R, McKinnell L-A, Gibbs M, Burnett C. 2017. The economic impact of space weather: Where do we stand? Risk Anal 37(2): 206–218. https://doi.org/10.1111/risa.12765. [CrossRef] [Google Scholar]
- Frissell NA, Vega JS, Markowitz E, Gerrard AJ, Engelke WD, Erickson PJ, Miller ES, Luetzelschwab RC, Bortnik J. 2019. High-frequency communications response to solar activity in September 2017 as observed by Amateur radio networks. Space Weather 17(1): 118–132. https://doi.org/10.1029/2018SW002008. [CrossRef] [Google Scholar]
- Gadgil S, Nokes-Malach TJ. 2012. Overcoming collaborative inhibition through error correction: A classroom experiment. Appl Cogn Psychol 26(3): 410–420. [CrossRef] [Google Scholar]
- Gibbs G. 1995. Learning in teams: A tutor guide, Oxford Centre for Staff and Learning Development, Oxford, UK. [Google Scholar]
- Gonzalez-Esparza JA, Sergeeva MA, Corona-Romero P, Mejia-Ambriz JC, Gonzalez LX, De la Luz V, Aguilar-Rodriguez E, Rodriguez M, Romero-Hernández E. 2018. Space weather events, hurricanes, and earthquakes in Mexico in September 2017. Space Weather 16(12): 2038–2051. https://doi.org/10.1029/2018SW001995. [CrossRef] [Google Scholar]
- Gross NA, Arge N, Bruntz R, Burns AG, Hughes WJ, et al. 2009. Space physics for graduate students: An activities-based approach. Eos, Trans Am Geophys Union 90(2): 13–14. https://doi.org/10.1029/2009EO020001. [CrossRef] [Google Scholar]
- Guhathakurta M. 2021. Everyday space weather. J Space Weather Space Clim 11: 36. https://doi.org/10.1051/swsc/2021019. [CrossRef] [EDP Sciences] [Google Scholar]
- Hapgood M. 2011. Towards a scientific understanding of the risk from extreme space weather. Adv Space Res 47(12): 2059–2072. Recent Advances in Space Weather Monitoring, Modelling, and Forecasting – 2, https://doi.org/10.1016/j.asr.2010.02.007. [CrossRef] [Google Scholar]
- Kaiser ML, Kucera T, Davila J, St Cyr O, Guhathakurta M, Christian E. 2008. The STEREO mission: An introduction. Space Sci Rev 136(1): 5–16. [CrossRef] [Google Scholar]
- Kauristie K, Andries J, Beck P, Berdermann J, Berghmans D, et al. 2021. Space weather services for civil aviation – Challenges and solutions. Remote Sens 13(18): 3685. https://doi.org/10.3390/rs13183685. [CrossRef] [Google Scholar]
- Knipp D, Cade WB (Trey) I. 2020. Resource list of textbooks and monographs related to Space Weather and Space Weather Science. Supplement to the AMS presentation entitled: “What are the Publically Accessable Resources for Space Weather Education and Training?” presented in Joint Panel Discussion 4: Shifting Paradigms: Communicating Space Weather through Social and Broadcast Media. http://doi.org/10.5281/zenodo.3974720. [Google Scholar]
- Knipp DJ, Bernstein V, Wahl K, Hayakawa H. 2021. Timelines as a tool for learning about space weather storms. J Space Weather Space Clim 11: 29. https://doi.org/10.1051/swsc/2021011. [CrossRef] [EDP Sciences] [Google Scholar]
- Knipp DJ, Hapgood M. 2019. Space weather aviation forecasting on a global scale. Eos 100. https://doi.org/10.1029/2019EO135277. [CrossRef] [Google Scholar]
- Kress BT, Rodriguez JV, Onsager TG. 2020. Chapter 20 – The GOES-R space environment in situ suite (SEISS): Measurement of energetic particles in geospace. In: The GOES-R series, Goodman SJ, Schmit TJ, Daniels J, Redmon RJ (Eds.), Elsevier, pp. 243–250. ISBN 978-0-12-814327-8. https://doi.org/10.1016/B978-0-12-814327-8.00020-2. [CrossRef] [Google Scholar]
- Lam R, Muldner K. 2017. Manipulating cognitive engagement in preparation-to-collaborate tasks and the effects on learning. Learn Instr 52: 90–101. https://doi.org/10.1016/j.learninstruc.2017.05.002, https://www.sciencedirect.com/science/article/pii/S095947521730261X. [CrossRef] [Google Scholar]
- Linty N, Minetto A, Dovis F, Spogli L. 2018. Effects of phase scintillation on the GNSS positioning error during the September 2017 storm at Svalbard. Space Weather 16(9): 1317–1329. https://doi.org/10.1029/2018SW001940. [CrossRef] [Google Scholar]
- Marrinan T, Aurisano J, Nishimoto A, Bharadwaj K, Mateevitsi V, Renambot L, Long L, Johnson A, Leigh J. 2014. SAGE2: A new approach for data intensive collaboration using scalable resolution shared displays. In: 10th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing, 22–25 October 2014, Miami, FL, USA, pp. 177–186. https://doi.org/10.4108/icst.collaboratecom.2014.257337. [Google Scholar]
- Menzel WP. 2020. Chapter 2 – History of geostationary weather satellites. In: The GOES-R series, Goodman SJ, Schmit TJ, Daniels J, Redmon RJ (Eds.), Elsevier, pp. 5–11. ISBN 978-0-12-814327-8. https://doi.org/10.1016/B978-0-12-814327-8.00002-0. [CrossRef] [Google Scholar]
- Menzel WP, Purdom JF. 1994. Introducing GOES-I: The first of a new generation of geostationary operational environmental satellites. Bull Am Meteorol Soc 75(5): 757–782. https://doi.org/10.1175/1520-0477(1994)075<0757:IGITFO>2.0.CO;2. [CrossRef] [Google Scholar]
- National Research Council. 2008. Severe space weather events: Understanding societal and economic impacts: A workshop report, The National Academies Press, Washington, DC. ISBN 978-0-309-12769-1. https://doi.org/10.17226/12507. [Google Scholar]
- Ogilvie KW, Chornay DJ, Fritzenreiter RJ, Hunsaker F, Keller J, et al. 1995. SWE, a comprehensive plasma instrument for the wind spacecraft. Space Sci Rev 71(1): 55–77. https://doi.org/10.1007/BF00751326. [CrossRef] [Google Scholar]
- Papitashvili NE, King JH. 2020a. OMNI 1-min data set, NASA space physics data facility. https://doi.org/10.48322/45bb-8792. [Google Scholar]
- Papitashvili NE, King JH. 2020b. OMNI hourly data set, NASA space physics data facility. https://doi.org/10.48322/1shr-ht18. [Google Scholar]
- Peake I, Blech JO, Fernando L, Schmidt H, Sreenivasamurthy R, Sudarsan SD. 2015. Visualization facilities for distributed and remote industrial automation: VxLab. In: 2015 IEEE 20th Conference on Emerging Technologies Factory Automation (ETFA), 8–11 September 2015, Luxembourg, Luxembourg, pp. 1–4. https://doi.org/10.1109/ETFA.2015.7301582. [Google Scholar]
- Peake I, Delfa JL, Bejarano R, Blech JO. 2021. Simulation components in Gazebo. In: 22nd IEEE International Conference on Industrial Technology (ICIT21), 10–12 March 2021, Valencia, Spain. https://doi.org/10.1109/ICIT46573.2021.9453594. [Google Scholar]
- Peake ID, Blech JO, Nath S, Aharon JJ, McGhie A. 2017. Towards a cloud-based architecture for visualization and augmented reality to support collaboration in manufacturing automation. ArXiv preprint [arXiv:1711.05997]. [Google Scholar]
- Peake ID, Blech JO, Watkins E, Greuter S, Schmidt HW. 2016. The virtual experiences portals – A reconfigurable platform for immersive visualization. In: Augmented reality, virtual reality, and computer graphics, De Paolis LT, Mongelli A (Eds.), Springer International Publishing, Cham, pp. 186–197. ISBN 978-3-319-40621-3. https://doi.org/10.1007/978-3-319-40621-3_14. [CrossRef] [Google Scholar]
- Pesnell WD, Thompson BJ, Chamberlin PC. 2012. The solar dynamics observatory (SDO). Springer US, New York, NY, pp. 3–15. ISBN 978-1-4614-3673-7. https://doi.org/10.1007/978-1-4614-3673-7 2. [Google Scholar]
- Piersanti M, Di Matteo S, Carter BA, Currie J, D’Angelo G. 2019. Geoelectric field evaluation during the September 2017 geomagnetic storm: MA.I.GIC. Model. Space Weather 17(8): 1241–1256. https://doi.org/10.1029/2019SW002202. [CrossRef] [Google Scholar]
- Redmon RJ, Seaton DB, Steenburgh R, He J, Rodriguez JV. 2018. September 2017’s geoeffective space weather and impacts to Caribbean radio communications during Hurricane response. Space Weather 16(9): 1190–1201. https://doi.org/10.1029/2018SW001897. [CrossRef] [Google Scholar]
- Rostoker G. 1972. Geomagnetic indices. Rev Geophys 10(4): 935–950. https://doi.org/10.1029/RG010i004p00935. [CrossRef] [Google Scholar]
- Sato H, Jakowski N, Berdermann J, Jiricka K, Heßelbarth A, Banys D, Wilken V. 2019. Solar radio burst events on 6 September 2017 and Its Impact on GNSS signal frequencies. Space Weather 17(6): 816–826. https://doi.org/10.1029/2019SW002198. [CrossRef] [Google Scholar]
- Simic M, Spichkova M, Schmidt H, Peake I. 2016. Enhancing learning experience by collaborative industrial projects. In: International Conference on Engineering Education and Research (ICEER), Sydney, Australia, 21–24 November 2016, pp. 1–8. [Google Scholar]
- Simpson F, Bahr K. 2021. Nowcasting and validating Earth’s electric field response to extreme space weather events using magnetotelluric data: Application to the September 2017 geomagnetic storm and comparison to observed and modeled fields in Scotland. Space Weather 19(1): e2019SW002,432. https://doi.org/10.1029/2019SW002432. [CrossRef] [Google Scholar]
- Simpson S. 2004. A Sun-to-mud education in two weeks. Space Weather 2(7). https://doi.org/10.1029/2004SW000092. [Google Scholar]
- Simpson F, Bahr K. 2020. Estimating the electric field response to the Halloween 2003 and September 2017 magnetic storms across Scotland using observed geomagnetic fields, magnetotelluric impedances and perturbation tensors. J Space Weather Space Clim 10: 48. https://doi.org/10.1051/swsc/2020049. [CrossRef] [EDP Sciences] [Google Scholar]
- Soni SL, Gupta RS, Verma PL. 2020. Interplanetary consequences and geoeffectiveness of CME associated with major solar flare from NOAA AR 12673. Res A&A 20(2): 023. https://doi.org/10.1088/1674-4527/20/2/23. [Google Scholar]
- Stone EC, Frandsen A, Mewaldt R, Christian E, Margolies D, Ormes J, Snow F. 1998. The advanced composition explorer. Space Sci Rev 86(1): 1–22. https://doi.org/10.1023/A:1005082526237. [CrossRef] [Google Scholar]
- Sullivan PC. 2020. Chapter 3 – GOES-R series spacecraft and instruments. In: The GOES-R series, Goodman SJ, Schmit TJ, Daniels J, Redmon RJ (Eds.), Elsevier, pp. 13–21. ISBN 978-0-12-814327-8. https://doi.org/10.1016/B978-0-12-814327-8.00003-2. [CrossRef] [Google Scholar]
- Tapping KF. 2013. The 10.7 cm solar radio flux (F10.7). Space Weather 11(7): 394–406. https://doi.org/10.1002/swe.20064. [CrossRef] [Google Scholar]
- Thomsen M. 2004. Why Kp is such a good measure of magnetospheric convection. Space Weather 2(11): 11004. https://doi.org/10.1029/2004SW000089. [Google Scholar]
- Tóth G, Sokolov IV, Gombosi TI, Chesney DR, Clauer CR, et al. 2005. Space weather modeling framework: A new tool for the space science community. J Geophys Res: Space Phys 110(A12): A12226. https://doi.org/10.1029/2005JA011126. [CrossRef] [Google Scholar]
- Wanliss JA, Showalter KM. 2006. High-resolution global storm index: Dst versus SYM-H. J Geophys Res: Space Phys 111: A02,202. https://doi.org/10.1029/2005JA011034. [CrossRef] [Google Scholar]
- Wilkinson P, Kennewell JA, Cole D. 2018. The development of the Australian Space Forecast Centre (ASFC). Hist Geo Space Sci 9(1): 53–63. https://doi.org/10.5194/hgss-9-53-2018. [CrossRef] [Google Scholar]
- Wing S, Johnson JR, Jen J, Meng C-I, Sibeck DG, Bechtold K, Freeman J, Costello K, Balikhin M, Takahashi K. 2005. Kp forecast models. J Geophys Res 110: A04203. https://doi.org/10.1029/2004JA010500. [Google Scholar]
- Yasyukevich Y, Astafyeva E, Padokhin A, Ivanova V, Syrovatskii S, Podlesnyi A. 2018. The 6 September 2017 X-class solar flares and their impacts on the ionosphere, GNSS, and HF radio wave propagation. Space Weather 16(8): 1013–1027. https://doi.org/10.1029/2018SW001932. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.