Open Access
Issue |
J. Space Weather Space Clim.
Volume 12, 2022
|
|
---|---|---|
Article Number | 30 | |
Number of page(s) | 20 | |
DOI | https://doi.org/10.1051/swsc/2022026 | |
Published online | 17 August 2022 |
- Allen RC, Lario D, Odstrcil D, Ho GC, Jian LK, et al. 2020. Solar wind streams and stream interaction regions observed by the Parker solar probe with corresponding observations at 1 au. Astrophys J Suppl Ser 246: 36. https://doi.org/10.3847/1538-4365/ab578f. [CrossRef] [Google Scholar]
- Alzate N, Morgan H, Viall N, Vourlidas A. 2021. Connecting the low to the high corona: A method to isolate transients in STEREO/COR1 images. ApJ 919(2): 98. https://doi.org/10.3847/1538-4357/ac10ca, 2107.02644. [CrossRef] [Google Scholar]
- Arge CN, Pizzo VJ. 2000. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J Geophys Res: Space Phys 105(A5): 10,465–10,479. https://doi.org/10.1029/1999JA000262. [Google Scholar]
- Aschwanden MJ. 2011. Solar stereoscopy and tomography. Living Rev Sol Phys 8(1): 5. https://doi.org/10.12942/lrsp-2011-5. [CrossRef] [Google Scholar]
- Baker D, Daly E, Daglis I, Kappenman JG, Panasyuk M. 2004. Effects of space weather on technology infrastructure. Space Weather 2(2): 1–11. https://doi.org/10.1029/2003SW000044. [CrossRef] [Google Scholar]
- Bale SD, Badman ST, Bonnell JW, Bowen TA, Burgess D, et al. 2019. Highly structured slow solar wind emerging from an equatorial coronal hole. Nature 576: 237–242. https://doi.org/10.1038/s41586-019-1818-7. [NASA ADS] [CrossRef] [Google Scholar]
- Berndt DJ, Clifford J. 1994. Using dynamic time warping to find patterns in time series. In: Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, AAAIWS’94, AAAI Press, Seattle, WA, USA, pp. 359–370. [Google Scholar]
- Brueckner GE, Howard RA, Koomen MJ, Korendyke CM, Michels DJ, et al. 1995. The large angle spectroscopic coronagraph (LASCO). Sol Phys 162(1): 357–402. https://doi.org/10.1007/BF00733434. [CrossRef] [Google Scholar]
- Butala MD, Frazin RA, Kamalabadi F. 2005. Three-dimensional estimates of the coronal electron density at times of extreme solar activity. J Geophys Res (Space Phys) 110(A9): A09S09. https://doi.org/10.1029/2004JA010938. [Google Scholar]
- der Holst BV, Sokolov IV, Meng X, Jin M, Manchester IWB, Tóth G, Gombosi TI. 2014. Alfvén wave solar model (AWSoM): coronal heating. Astrophys J 782(2): 81. https://doi.org/10.1088/0004-637x/782/2/81. [CrossRef] [Google Scholar]
- Diego P, Storini M, Laurenza M. 2010. Persistence in recurrent geomagnetic activity and its connection with space climate. J Geophys Res: Space Phys 115(A6): A06103. https://doi.org/10.1029/2009JA014716. [Google Scholar]
- Doherty P, Coster AJ, Murtagh W. 2004. Space weather effects of October–November 2003. GPS Solut 8: 267–271. https://doi.org/10.1007/s10291-004-0109-3. [CrossRef] [Google Scholar]
- Eastwood JP, Hapgood MA, Biffis E, Benedetti D, Bisi MM, Green L, Bentley RD, Burnett C. 2018. Quantifying the economic value of space weather forecasting for power grids: An exploratory study. Space Weather 16(12): 2052–2067. https://doi.org/10.1029/2018SW002003. [Google Scholar]
- Edwards L, Kuridze D, Williams T, Morgan H. 2022. A solar-cycle study of coronal rotation: Large variations, rapid changes, and implications for solar-wind models. Astrophys J 928(1): 42. https://doi.org/10.3847/1538-4357/ac54ba. [CrossRef] [Google Scholar]
- Franses PH, Wiemann T. 2020. Intertemporal similarity of economic time series: An application of dynamic time warping. Comput Econ 56: 59–75. https://doi.org/10.1007/s10614-020-09986-0. [CrossRef] [Google Scholar]
- Frazin RA. 2000. Tomography of the solar corona. I. A Robust, Regularized, Positive Estimation Method. ApJ 530(2): 1026–1035. https://doi.org/10.1086/308412. [CrossRef] [Google Scholar]
- Gonzi S, Weinzierl M, Bocquet FX, Bisi MM, Odstrcil D, Jackson BV, Yeates AR, Jackson DR, Henney CJ, Nick Arge C. 2021. Impact of inner heliospheric boundary conditions on solar wind predictions at Earth. Space Weather 19(1): e02499. https://doi.org/10.1029/2020SW002499. [CrossRef] [Google Scholar]
- Habbal SR, Woo R, Fineschi S, O’Neal R, Kohl J, Noci G, Korendyke C. 1997. Origins of the slow and the ubiquitous fast solar wind. ApJ 489(1): L103–L106. https://doi.org/10.1086/310970, astro-ph/9709021. [NASA ADS] [CrossRef] [Google Scholar]
- Hinterreiter J, Amerstorfer T, Temmer M, Reiss MA, Weiss AJ, Möstl C, Barnard LA, Pomoell J, Bauer M, Amerstorfer UV. 2021. Drag-based CME modeling with heliospheric images incorporating frontal deformation: ELEvoHI 2.0. Space Weather 19: e2021SW002836. https://doi.org/10.1029/2021SW002836. 2108.08075. [Google Scholar]
- Howard RA, Moses JD, Vourlidas A, Newmark JS, Socker DG, et al. 2008. Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci Rev 136(1–4): 67–115. https://doi.org/10.1007/s11214-008-9341-4. [CrossRef] [Google Scholar]
- Imken T, Randolph T, DiNicola M, Nicholas A. 2018. Modeling spacecraft safe mode events. In: 2018 IEEE Aerospace Conference, 03-10 March, Big Sky, MT, USA. IEEE, pp. 1–13. https://doi.org/10.1109/AERO.2018.8396383. [Google Scholar]
- Jackson BV, Buffington A, Hick PP, Clover JM, Bisi MM, Webb DF. 2010. SMEI 3D reconstruction of a coronal mass ejection interacting with a corotating solar wind density enhancement: The 2008 April CME. Astrophys J 724(2): 829–834. https://doi.org/10.1088/0004-637x/724/2/829. [CrossRef] [Google Scholar]
- Jackson BV, Clover JM, Hick PP, Buffington A, Bisi MM, Tokumaru M. 2013. Inclusion of real-time in-situ measurements into the UCSD time-dependent tomography and its use as a forecast algorithm. Sol Phys 285(1–2): 151–165. https://doi.org/10.1007/s11207-012-0102-x. [CrossRef] [Google Scholar]
- Jackson BV, Buffington A, Cota L, Odstrcil D, Bisi MM, Fallows R, Tokumaru M. 2020. Iterative tomography: A key to providing time-dependent 3-D reconstructions of the inner heliosphere and the unification of space weather forecasting techniques. Front Astron Space Sci 7: 568429. https://doi.org/10.3389/fspas.2020.568429, URL https://www.frontiersin.org/article/10.3389/fspas.2020.568429. [CrossRef] [Google Scholar]
- Jang S, Kwon R-Y, Linker JA, Riley P, Shin G, Downs C, Kim Y-H. 2021. Development of a deep learning model for inversion of rotational coronagraphic images into 3D electron density. ApJ 920(2): L30. https://doi.org/10.3847/2041-8213/ac2a46. [CrossRef] [Google Scholar]
- Kaiser ML. 2005. The STEREO mission: An overview. Adv Space Res 36: 1483–1488. https://doi.org/10.1016/j.asr.2004.12.066. [CrossRef] [Google Scholar]
- Kasper JC, Bale SD, Belcher JW, Berthomier M, Case AW, et al. 2019. Alfvénic velocity spikes and rotational flows in the near-Sun solar wind. Nature 576: 228–231. https://doi.org/10.1038/s41586-019-1813-z. [CrossRef] [Google Scholar]
- Kramar M, Airapetian V, Mikić Z, Davila J. 2014. 3D coronal density reconstruction and retrieving the magnetic field structure during solar minimum. Sol Phys 289(8): 2927–2944. https://doi.org/10.1007/s11207-014-0525-7, 1405.0951. [CrossRef] [Google Scholar]
- Linker JA, Mikić Z, Biesecker DA, Forsyth RJ, Gibson SE, Lazarus AJ, Lecinski A, Riley P, Szabo A, Thompson BJ. 1999. Magnetohydrodynamic modeling of the solar corona during Whole Sun Month. J Geophys Res: Space Phys 104: 9809–9830. https://doi.org/10.1029/1998ja900159. [CrossRef] [Google Scholar]
- MacNeice P, Jian LK, Antiochos SK, Arge CN, Bussy-Virat CD, et al. 2018. Assessing the quality of models of the ambient solar wind. Space Weather 16(11): 1644–1667. https://doi.org/10.1029/2018SW002040. [NASA ADS] [CrossRef] [Google Scholar]
- Meziane K, Alrefay T, Hamza A. 2014. On the shape and motion of the Earth’s bow shock. Planet Space Sci 93–94: 1–9. https://doi.org/10.1016/j.pss.2014.01.006. [CrossRef] [Google Scholar]
- Milan SE, Provan G, Hubert B. 2007. Magnetic flux transport in the Dungey cycle: A survey of dayside and nightside reconnection rates. J Geophys Res: Space Phys 112: 187–190. https://doi.org/10.1029/2006JA011642. [Google Scholar]
- Morgan H. 2011a. The rotation of the white light solar corona at height 4 R⊙ from 1996 to 2010: A tomographical study of large angle and spectrometric coronagraph C2 observations. Astrophys J 738(2): 189. https://doi.org/10.1088/0004-637X/738/2/189. [CrossRef] [Google Scholar]
- Morgan H. 2011b. Longitudinal drifts of streamers across the heliospheric current sheet. Astrophys J 738(2): 190. https://doi.org/10.1088/0004-637x/738/2/190. [CrossRef] [Google Scholar]
- Morgan H. 2015. An atlas of coronal electron density at 5 R⊙. I. Data processing and calibration. ApJS 219(2): 23. https://doi.org/10.1088/0067-0049/219/2/23, 1509.03113. [CrossRef] [Google Scholar]
- Morgan H. 2019. An atlas of coronal electron density at 5 R⊙. II: A spherical harmonic method for density reconstruction. Astrophys J Suppl Ser 242(1): 3. https://doi.org/10.3847/1538-4365/ab125d. [CrossRef] [Google Scholar]
- Morgan H. 2021. Daily variations of plasma density in the solar streamer belt. ApJ 922(2): 165. https://doi.org/10.3847/1538-4357/ac1799. [CrossRef] [Google Scholar]
- Morgan H, Cook AC. 2020. The width, density, and outflow of solar coronal streamers. ApJ 893(1): 57. https://doi.org/10.3847/1538-4357/ab7e32, 2003.04809. [CrossRef] [Google Scholar]
- Morgan H, Habbal SR. 2007a. An empirical 3D model of the large-scale coronal structure based on the distribution of Hα filaments on the solar disk. A&A 464(1): 357–365. https://doi.org/10.1051/0004-6361:20066482, astro-ph/0610219. [CrossRef] [EDP Sciences] [Google Scholar]
- Morgan H, Habbal SR. 2007b. Are solar maximum fan streamers a consequence of twisting sheet structures? A&A 465(3): L47–L50. https://doi.org/10.1051/0004-6361:20077126. [CrossRef] [EDP Sciences] [Google Scholar]
- Morgan H, Habbal SR. 2007c. The long-term stability of the visible F corona at heights of 3–6 R⊙. A&A 471(2): L47–L50. https://doi.org/10.1051/0004-6361:20078071. [CrossRef] [EDP Sciences] [Google Scholar]
- Morgan H, Habbal SR. 2010. Observational aspects of the three-dimensional coronal structure over a solar activity cycle. ApJ 710(1): 1–15. https://doi.org/10.1088/0004-637X/710/1/1. [Google Scholar]
- Morgan H, Habbal SR, Lugaz N. 2009. Mapping the structure of the corona using fourier backprojection tomography. ApJ 690(2): 1119–1129. https://doi.org/10.1088/0004-637X/690/2/1119. [CrossRef] [Google Scholar]
- Morgan H, Byrne JP, Habbal SR. 2012. Automatically detecting and tracking coronal mass ejections. I. Separation of dynamic and quiescent components in coronagraph images. ApJ 752: 144. https://doi.org/10.1088/0004-637X/752/2/144. [CrossRef] [Google Scholar]
- Odstrcil D. 2003. Modeling 3-D solar wind structure. Adv Space Res 32(4): 497–506. Heliosphere at Solar Maximum, https://doi.org/10.1016/S0273-1177(03)00332-6. [CrossRef] [Google Scholar]
- Odstrcil D, Riley P, Zhao XP. 2004. Numerical simulation of the 12 May 1997 interplanetary CME event. J Geophys Res: Space Phys 109(A2): A02116. https://doi.org/10.1029/2003JA010135. [CrossRef] [Google Scholar]
- Owens MJ. 2018. Time-window approaches to space-weather forecast metrics: A solar wind case study. Space Weather 16(11): 1847–1861. https://doi.org/10.1029/2018SW002059. [CrossRef] [Google Scholar]
- Owens MJ, Nichols JD. 2021. Using in-situ solar-wind observations to generate inner-boundary conditions to outer-heliosphere simulations, 1: Dynamic time warping applied to synthetic observations. Mon Not R Astron Soc 508: 2575–2582. https://doi.org/10.1093/mnras/stab2512. [CrossRef] [Google Scholar]
- Owens MJ, Riley P. 2017. Probabilistic solar wind forecasting using large ensembles of near-Sun conditions with a simple one-dimensional “upwind” scheme. Space Weather 15(11): 1461–1474. https://doi.org/10.1002/2017SW001679. [NASA ADS] [CrossRef] [Google Scholar]
- Owens MJ, Challen R, Methven J, Henley E, Jackson DR. 2013. A 27 day persistence model of near-Earth solar wind conditions: A long lead-time forecast and a benchmark for dynamical models. Space Weather 11(5): 225–236. https://doi.org/10.1002/swe.20040. [CrossRef] [Google Scholar]
- Owens MJ, Lang M, Barnard L, Riley P, Ben-Nun M, Scott CJ, Lockwood M, Reiss MA, Arge CN, Gonzi S. 2020. A computationally efficient, time-dependent model of the solar wind for use as a surrogate to three-dimensional numerical magnetohydrodynamic simulations. Sol Phys 295: 1–17. https://doi.org/10.1007/s11207-020-01605-3. [CrossRef] [Google Scholar]
- Parker EN, Marshak RE, Johnson G. 1964. Interplanetary dynamical processes. Phys Today 17: 72. https://doi.org/10.1063/1.3051487. [CrossRef] [Google Scholar]
- Poirier N, Kouloumvakos A, Rouillard AP, Pinto RF, Vourlidas A, et al. 2020. Detailed imaging of coronal rays with the Parker solar probe. ApJS 246(2): 60. https://doi.org/10.3847/1538-4365/ab6324, 1912.09345. [CrossRef] [Google Scholar]
- Poirier N, Rouillard AP, Kouloumvakos A, Przybylak A, Fargette N, Pobeda R, Réville V, Pinto RF, Indurain M, Alexandre M. 2021. Exploiting white-light observations to improve estimates of magnetic connectivity. Front Astron Space Sci 8: 84. https://doi.org/10.3389/fspas.2021.684734. [CrossRef] [Google Scholar]
- Pomoell J, Poedts S. 2018. EUHFORIA: European heliospheric forecasting information asset. J Space Weather Space Clim 8: A35. https://doi.org/10.1051/swsc/2018020. [Google Scholar]
- Riley P, Lionello R. 2011. Mapping solar wind streams from the Sun to 1 AU: A comparison of techniques. Sol Phys 270: 575–592. https://doi.org/10.1007/s11207-011-9766-x. [CrossRef] [Google Scholar]
- Riley P, Linker JA, Lionello R, Mikic Z. 2012. Corotating interaction regions during the recent solar minimum: The power and limitations of global MHD modeling. J Atmos Sol-Terr Phys 83: 1–10. https://doi.org/10.1016/j.jastp.2011.12.013. [CrossRef] [Google Scholar]
- Salvador S, Chan P. 2004. FastDTW: Toward accurate dynamic time warping in linear time and space. In: KDD workshop on mining temporal and sequential data, Seattle, Washington, USA. [Google Scholar]
- Samara E, Laperre B, Kieokaew R, Temmer M, Verbeke C, Rodriguez L, Magdalenić J, Poedts S. 2022. Dynamic time warping as a means of assessing solar wind time series. Astrophys J 927(2): 187. https://doi.org/10.3847/1538-4357/ac4af6. [CrossRef] [Google Scholar]
- Schwenn R. 1990. Large-scale structure of the interplanetary medium. In: Physics of the inner heliosphere I. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75361-9. [CrossRef] [Google Scholar]
- Schwenn R. 2006. Space weather: The solar perspective. Living Rev Sol Phys 3: 1–72. https://doi.org/10.12942/lrsp-2006-2. [CrossRef] [Google Scholar]
- Skutkova H, Vitek M, Babula P, Kizek R, Provaznik I. 2013. Classification of genomic signals using dynamic time warping. BMC Bioinform 14: 1–7. https://doi.org/10.1186/1471-2105-14-S10-S1. [CrossRef] [Google Scholar]
- Thernisien AF, Howard RA. 2006. Electron density modeling of a streamer using LASCO data of 2004 January and February. ApJ 642: 523–532. https://doi.org/10.1086/500818. [CrossRef] [Google Scholar]
- Vibert D, Peillon C, Lamy P, Frazin RA, Wojak J. 2016. Time-dependent tomographic reconstruction of the solar corona. Astron Comput 17: 144–162. https://doi.org/10.1016/j.ascom.2016.09.001, 1607.06308. [CrossRef] [Google Scholar]
- Wang YM, Sheeley NR Jr. 1990. Solar wind speed and coronal flux-tube expansion. ApJ 355: 726. https://doi.org/10.1086/168805. [NASA ADS] [CrossRef] [Google Scholar]
- Weinzierl M, Yeates AR, Mackay DH, Henney CJ, Arge CN. 2016. A New technique for the photospheric driving of non-potential solar coronal magnetic field simulations. ApJ 823(1): 55. https://doi.org/10.3847/0004-637X/823/1/55. [NASA ADS] [CrossRef] [Google Scholar]
- Yeates AR, Mackay DH, van Ballegooijen AA. 2008. Modelling the global solar corona II: Coronal evolution and filament chirality comparison. Sol Phys 247(1): 103–121. https://doi.org/10.1007/s11207-007-9097-0, 0711.2887. [CrossRef] [Google Scholar]
- Yeates AR, Amari T, Contopoulos I, Feng X, Mackay DH, et al. 2018. Global non-potential magnetic models of the solar corona during the March 2015 eclipse. Space Sci Rev 214(5): 99. https://doi.org/10.1007/s11214-018-0534-1, 1808.00785. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.