Open Access
Issue |
J. Space Weather Space Clim.
Volume 12, 2022
|
|
---|---|---|
Article Number | 20 | |
Number of page(s) | 22 | |
DOI | https://doi.org/10.1051/swsc/2022020 | |
Published online | 21 June 2022 |
- Akansu AN. 1991. On-signal decomposition techniques. Opt. Eng. 30(7): 912. https://doi.org/10.1117/12.55886. [CrossRef] [Google Scholar]
- Aschwanden MJ. 2010. Image processing techniques and feature recognition in solar physics. Sol Phys 262(2): 235–275. https://doi.org/10.1007/s11207-009-9474-y. [CrossRef] [Google Scholar]
- Bein BM, Berkebile-Stoiser S, Veronig AM, Temmer M, Muhr N, Kienreich I, Utz D, Vršnak B. 2011. Impulsive acceleration of coronal mass ejections. I. Statistics and coronal mass ejection source region characteristics. Astrophys J 738(2): 191. https://doi.org/10.1088/0004-637X/738/2/191. [Google Scholar]
- Chui CK. 1992. An introduction to wavelets. Academic Press, London. [Google Scholar]
- Curto JJ, Blanca M, Martnez E. 2008. Automatic sunspots detection on full-disk solar images using mathematical morphology. Sol Phys 250(2): 411–429. https://doi.org/10.1007/s11207-008-9224-6. [CrossRef] [Google Scholar]
- Fisher GH, Welsch BT. 2008. FLCT: A fast, efficient method for performing local correlation tracking. In: Subsurface and atmospheric influences on solar activity, vol. 383 of Astronomical Society of the Pacific Conference Series, Howe R, Komm RW, Balasubramaniam KS, Petrie GJD, (Eds.), Astronomical Society of the Pacific, San Francisco, pp. 373–380. [Google Scholar]
- Guo F, Giacalone J. 2013. The acceleration of thermal protons at parallel collisionless shocks: Three-dimensional hybrid simulations. Astrophys J 773(2): 158. https://doi.org/10.1088/0004-637X/773/2/158. [CrossRef] [Google Scholar]
- Hagenaar HJ, Schrijver CJ, Title AM, Shine RA. 1999. Dispersal of magnetic flux in the quiet solar photosphere. Astrophys J 511(2): 932–944. https://doi.org/10.1086/306691. [CrossRef] [Google Scholar]
- Holschneider M, Kronland-Martinet R, Morlet J, Tchamitchian P. 1989. A real-time algorithm for signal analysis with the help of the wavelet transform. In: Wavelets. Time-frequency methods and phase space, Combes J-M, Grossmann A, Tchamitchian P, (Eds.), Springer-Verlag, Berlin. pp. 286–297. [CrossRef] [Google Scholar]
- Ireland J, Inglis AR, Shih AY, Christe S, Mumford S, Hayes LA, Thompson BJ, Hughitt VK. 2019. AWARE: An algorithm for the automated characterization of EUV waves in the solar atmosphere. Sol Phys 294(11): 158. https://doi.org/10.1007/s11207-019-1505-8. [CrossRef] [Google Scholar]
- Kim T, Park E, Lee H, Moon Y-J, Bae S-H, Lim D, Jang S, Kim L, Cho I-H, Choi M, Cho K-S. 2019. Solar farside magnetograms from deep learning analysis of STEREO/EUVI data. Nat Astron 3: 397–400. https://doi.org/10.1038/s41550-019-0711-5. [CrossRef] [Google Scholar]
- Kozarev KA, Davey A, Kendrick A, Hammer M, Keith C. 2017. The Coronal Analysis of SHocks and Waves (CASHeW) framework. J Space Weather Space Clim 7: A32. https://doi.org/10.1051/swsc/2017028. [CrossRef] [EDP Sciences] [Google Scholar]
- Kozarev KA, Dayeh MA, Farahat A. 2019. Early-stage solar energetic particle acceleration by coronal mass ejection-driven shocks with realistic seed spectra. I. Low corona. Astrophys J 871(1): 65. https://doi.org/10.3847/1538-4357/aaf1ce. [CrossRef] [Google Scholar]
- Kozarev KA, Evans RM, Schwadron NA, Dayeh MA, Opher M, Korreck KE, van der Holst B. 2013. Global numerical modeling of energetic proton acceleration in a coronal mass ejection traveling through the solar corona. Astrophys J 778: 43. https://doi.org/10.1088/0004-637X/778/1/43. [CrossRef] [Google Scholar]
- Kozarev KA, Raymond JC, Lobzin VV, Hammer M. 2015. Properties of a coronal shock wave as a driver of early SEP acceleration. Astrophys J 799(2): 167. https://doi.org/10.1088/0004-637X/799/2/167. [CrossRef] [Google Scholar]
- Kozarev KA, Schwadron NA. 2016. A data-driven analytic model for proton acceleration by large-scale solar coronal shocks. Astrophys J 831: 120. https://doi.org/10.3847/0004-637X/831/2/120. [CrossRef] [Google Scholar]
- Kwon R-Y, Zhang J, Olmedo O. 2014. New Insights into the physical nature of coronal mass ejections and associated shock waves within the framework of the three-dimensional structure. Astrophys J 794(2): 148. https://doi.org/10.1088/0004-637X/794/2/148. [CrossRef] [Google Scholar]
- Lemen JR, Title AM, Akin DJ, Boerner PF, Chou C, et al. 2012. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol Phys 275: 17–40. https://doi.org/10.1007/s11207-011-9776-8. [Google Scholar]
- Li R, Zhu J. 2013. Solar flare forecasting based on sequential sunspot data. Res Astron Astrophy 13(9): 1118–1126. https://doi.org/10.1088/1674-4527/13/9/010. [CrossRef] [Google Scholar]
- Long DM, Bloomfield DS, Gallagher PT, Pérez-Suárez D. 2014. CorPITA: An automated algorithm for the identification and analysis of coronal “EIT waves”. Sol Phys 289: 3279–3295. https://doi.org/10.1007/s11207-014-0527-5. [CrossRef] [Google Scholar]
- Long DM, DeLuca EE, Gallagher PT. 2011. The wave properties of coronal bright fronts observed using SDO/AIA. Astrophys J Lett 741: L21. https://doi.org/10.1088/2041-8205/741/1/L21. [CrossRef] [Google Scholar]
- Metropolis N. 1949. The Monte Carlo method. J Am Stat Assoc 44(247): 335. https://doi.org/10.2307/2280232. [CrossRef] [Google Scholar]
- November LJ, Simon JW. 1988. Precise proper-motion measurement of solar granulation. Astrophys J 333(1): 427–442. https://doi.org/10.1086/166758. [CrossRef] [Google Scholar]
- Pérez-Suárez D, Higgins PA, Bloomfield DS, McAteer RTJ, Krista LD, Byrne JP, Gallagher PT. 2011. Automated solar feature detection for space weather applications. In: Applied signal and image processing: Multidisciplinary advancements, Qahwaji R, Green R, Hines E, (Eds.), IGI Global, Hershley, PA. pp. 207–225. https://doi.org/10.4018/978-1-60960-477-6.ch013. [CrossRef] [Google Scholar]
- Podladchikova O, Berghmans D. 2005. Automated detection of EIT waves and dimmings. Sol Phys 228(1–2): 265–284. https://doi.org/10.1007/s11207-005-5373-z. [CrossRef] [Google Scholar]
- Reames DV. 2021. Solar energetic particles. A modern primer on understanding sources, acceleration and propagation, vol 978, Springer Cham. https://doi.org/10.1007/978-3-030-66402-2. [CrossRef] [Google Scholar]
- Rouillard AP, Plotnikov I, Pinto RF, Tirole M, Lavarra M, et al. 2016. Deriving the properties of coronal pressure fronts in 3D: Application to the 2012 May 17 ground level enhancement. Astrophys J 833(1): 45. https://doi.org/10.3847/1538-4357/833/1/45. [CrossRef] [Google Scholar]
- Sokolov IV, Roussev II, Skender M, Gombosi TI, Usmanov AV. 2009. Transport equation for MHD turbulence: Application to particle acceleration at interplanetary shocks. Astrophys J 696: 261–267. https://doi.org/10.1088/0004-637X/696/1/261. [CrossRef] [Google Scholar]
- Starck J-L, Murtagh F. 2002. Astronomical image and data analysis. Springer-Verlag, Berlin-Heidelberg. [CrossRef] [Google Scholar]
- Stenborg G, Cobelli PJ. 2003. A wavelet packets equalization technique to reveal the multiple spatial-scale nature of coronal structures. A&A 398: 1185–1193. https://doi.org/10.1051/0004-6361:20021687. [CrossRef] [EDP Sciences] [Google Scholar]
- Stenborg G, Vourlidas A, Howard RA. 2008. A fresh view of the extreme-ultraviolet corona from the application of a new image-processing technique. Astrophys J 674(2): 1201–1206. https://doi.org/10.1086/525556. [CrossRef] [Google Scholar]
- Szenicer A, Fouhey DF, Munoz-Jaramillo A, Wright PJ, Thomas R, Galvez R, Jin M, Cheung MCM. 2019. A deep learning virtual instrument for monitoring extreme UV solar spectral irradiance. Sci Adv 5(10): eaaw6548. https://doi.org/10.1126/sciadv.aaw6548. [CrossRef] [Google Scholar]
- Temmer M. 2016. Kinematical properties of coronal mass ejections. Astron Nachr 337(10): 1010. https://doi.org/10.1002/asna.201612425. [CrossRef] [Google Scholar]
- The SunPy Community, Barnes WT, Bobra MG, Christe SD, Freij N, et al. 2020. The SunPy Project: Open source development and status of the version 1.0 core package. Astrophys J 890: 68. https://doi.org/10.3847/1538-4357/ab4f7a. [CrossRef] [Google Scholar]
- Vainio R, Laitinen T. 2008. Simulations of coronal shock acceleration in self-generated turbulence. J Atmos Sol Terr Phys 70: 467–474. https://doi.org/10.1016/j.jastp.2007.08.064. [CrossRef] [Google Scholar]
- Verbeeck C, Delouille V, Mampaey B, De Visscher R. 2014. The SPoCA-suite: Software for extraction, characterization, and tracking of active regions and coronal holes on EUV images. A&A 561: A29. https://doi.org/10.1051/0004-6361/201321243. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Vourlidas A, Syntelis P, Tsinganos K. 2012. Uncovering the birth of a coronal mass ejection from two-viewpoint SECCHI observations. Sol Phys 280(2): 509–523. https://doi.org/10.1007/s11207-012-9933-8. [CrossRef] [Google Scholar]
- Welsch BT, Fisher GH, Abbett WP, Regnier S. 2004. ILCT: Recovering photospheric velocities from magnetograms by combining the induction equation with local correlation tracking. Astrophys J 610(2): 1148–1156. https://doi.org/10.1086/421767. [CrossRef] [Google Scholar]
- Wuelser J-P, Lemen JR, Tarbell TD, Wolfson CJ, Cannon JC, et al. 2004. EUVI: The STEREO-SECCHI extreme ultraviolet imager. In: Telescopes and instrumentation for solar astrophysics, vol. 5171 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Fineschi S, Gummin MA, (Eds.), Society of Photo-Optical Instrumentation Engineers, Bellingham, Washington, pp. 111–122. https://doi.org/10.1117/12.506877. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.