Open Access
Issue |
J. Space Weather Space Clim.
Volume 12, 2022
|
|
---|---|---|
Article Number | 21 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/swsc/2022017 | |
Published online | 21 June 2022 |
- Baker DN, Stauning P, Hones EW Jr, Higbie PR, Belian RD. 1981. Near-equatorial, high-resolution measurements of electron precipitation at L ≈ 6.6. J Geophys Res 86: A4. https://doi.org/10.1029/JA086iA04p02295. [Google Scholar]
- Basler RP. 1963. Radio wave absorption in the auroral ionosphere. J Geophys Res 68: 16. https://doi.org/10.1029/JZ068i016p04665. [Google Scholar]
- Belrose J, Cetiner E. 1962. Measurement of electron densities in the ionospheric D-region at the time of a 2+ solar flare. Nature 195: 688–690. https://doi.org/10.1038/195688a0. [CrossRef] [Google Scholar]
- Berngardt OI, Ruohoniemi JM, Nishitani N, Shepherd SG, Bristow WA, Miller ES. 2018. Attenuation of decameter wavelength sky noise during X-ray solar flares in 2013–2017 based on the observations of midlatitude radars. J Atmos Sol-Terr Phys 173: 1–13. https://doi.org/10.1016/j.jastp.2018.03.022. [CrossRef] [Google Scholar]
- Bilitza D, Altadill D, Truhlik V, Shubin V, Galkin I, Reinisch B, Huang X. 2017. International reference ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather 15: 2. https://doi.org/10.1002/2016SW001593. [Google Scholar]
- Boteler DH. 2018. Chapter 26 – dealing with space weather: The Canadian experience. In: Extreme events in geospace, Buzulukova N (Ed.), Elsevier, pp. 635–656. ISBN 9780128127001, https://doi.org/10.1016/B978-0-12-812700-1.00026-1. https://www.sciencedirect.com/science/article/pii/B9780128127001000261. [CrossRef] [Google Scholar]
- Brodrick D, Tingay S, Wieringa M. 2005. X-ray magnitude of the 4 November 2003 solar flare inferred from the ionospheric attenuation of the galactic radio background. J Geophys Res 110: A09S36. https://doi.org/1029/2004JA010960. [CrossRef] [Google Scholar]
- Buonsanto MJ. 1999. Ionospheric storms – A review. Space Sci Rev 88: 563–601. https://doi.org/10.1023/A:1005107532631. [CrossRef] [Google Scholar]
- Cameron D. 2012. Delta reroutes flights as solar storm hits Earth, Wall Street Journal, 25 January 2012. Available online at: http://www.wsj.com/articles/SB10001424052970203806504577181133714653496. [Google Scholar]
- Cannon P, Angling M, Barclay L, Curry C, Dyer C, Edwards R, Greene G, Hapgood M, Horne R, Jackson D, Mitchell C, Owen J, Richards A, Rogers C, Ryden K, Saunders S, Sweeting M, Tanner R, Thomson A, Underwood C. 2013. Extreme space weather: impacts on engineered systems and infrastructure. Royal Academy of Engineering, London. [Google Scholar]
- Chakraborty S, Ruohoniemi JM, Baker JBH, Nishitani N. 2018. Characterization of short-wave fadeout seen in daytime SuperDARN ground scatter observations. Radio Sci 53: 4. https://doi.org/10.1002/2017RS006488. [Google Scholar]
- Cherniak I, Zakharenkova I, Braun J, Wu Q, Pedatella N, Schreiner W, Weiss J-P, Hunt D. 2021. Accuracy assessment of the quiet-time ionospheric F2 peak parameters as derived from COSMIC-2 multi-GNSS radio occultation measurements. J Space Weather Space Clim 11: 18. https://doi.org/10.1051/swsc/2020080. [CrossRef] [EDP Sciences] [Google Scholar]
- Coyne VJ (Ed.). 1979. Special topics in HF propagation. In: AGARD Conf. Proc. No. 263, Advisory Group for Aerospace Research and Development, North Atlantic Treaty Organization, Printed by Technical Editing and Reproduction Ltd, Harford House, 7-9 Charlotte St, London. [Google Scholar]
- Danilov AD. 2013. Ionospheric F-region response to geomagnetic disturbances. Adv Space Res 52: 3. https://doi.org/10.1016/j.asr.2013.04.019. [Google Scholar]
- Davies K. 1990. Ionospheric radio, IEE Electromagn. Ser., Peter Peregrinus, London, Vol. 31. [CrossRef] [Google Scholar]
- Driatsky VM. 1966. Study of the space and time distribution of auroral absorption according to observations of the riometer network in the Arctic. Geomagn Aeron 6: 828–834. [Google Scholar]
- Fiori RAD, Koustov AV, Chakraborty S, Ruohoniemi JM, Danskin DW, Boteler DH, Shepherd SG. 2018. Examining the potential of the super dual auroral radar network for monitoring the space weather impact of solar X-Ray flares. Space Weather 16: 1348–1362. https://doi.org/10.1029/2018SW001905. [CrossRef] [Google Scholar]
- Fiori RAD, Trichtchenko L, Balch C, Spanswick E, Groleau S. 2020. Characterizing auroral-zone absorption based on global Kp and regional geomagnetic hourly range indices. Space Weather 18: 12. https://doi.org/10.1029/2020SW002572. [Google Scholar]
- Foppiano AJ, Bradley PA. 1983. Prediction of auroral absorption of high-frequency waves at oblique incidence. Telecommun J 50: 10. [Google Scholar]
- Foppiano AJ, Bradley PA. 1984. Day-to-day variability of riometer absorption. J Atmos Terr Phys 46: 8. https://doi.org/10.1016/0021-9169(84)90130-2. [Google Scholar]
- Frank-Kamenetsky A, Troshichev O. 2012. A relationship between the auroral absorption and the magnetic activity in the polar cap. J Atmos Sol-Terr Phys 77: 40–45. https://doi.org/10.1016/j.jastp.2011.11.007. [CrossRef] [Google Scholar]
- Frissell NA, Miller ES, Kaeppler SR, Ceglia F, Pascoe D, Sinanis N, Smith P, Williams R, Shovkoplyas A. 2014. Ionospheric sounding using real-time amateur radio reporting networks. Space Weather 12: 651–656. https://doi.org/10.1002/2014SW001132. [CrossRef] [Google Scholar]
- Frissell NA, Vega JS, Markowitz EM, Gerrard AJ, Engelke WD, Erickson PJ, Miller ES, Luetzelschwab RC, Bortnik J. 2019. High-frequency communications response to solar activity in September 2017 as Observed by Amateur radio networks. Space Weather 17: 118–132. https://doi.org/10.1029/2018SW002008. [CrossRef] [Google Scholar]
- Fuller-Rowell TJ, Codrescu MN, Rishbeth H, Moffett RJ, Quegan S. 1996. On the seasonal response of the thermosphere and ionosphere to geomagnetic storms. J Geophys Res 101: 2343–2353. https://doi.org/10.1029/95JA01614. [CrossRef] [Google Scholar]
- Goodman JM. 1992. HF communications – science and technology, Van Norstrand Reinhold, New York. [Google Scholar]
- Hargreaves JK. 1966. On the variation of auroral radio absorption with geomagnetic activity. Planet Space Sci 14: 991–1006. https://doi.org/10.1016/0032-0633(66)90136-X. [CrossRef] [Google Scholar]
- Hargreaves JK. 1969. Auroral absorption of HF radio waves in the ionosphere: A review of results from the first decade of riometry. Proc IEEE 57(8): 1348–1373. https://doi.org/10.1109/PROC.1969.7275. [CrossRef] [Google Scholar]
- Hargreaves JK. 2005. A new method of studying the relation between ionization rates and radio-wave absorption in polar-cap absorption events. Ann Geophys 23: 359–369. https://doi.org/10.5194/angeo-23-359-2005. [CrossRef] [Google Scholar]
- Hargreaves JK. 2010. Auroral radio absorption: The prediction question. Adv Space Res 45: 1075–1092. https://doi.org/10.1016/j.asr.2009.10.026. [CrossRef] [Google Scholar]
- Hargreaves JK, Cowley FC. 1967. Studies of auroral radio absorption events at three magnetic latitudes – I. Occurrence and statistical properties of the events. Planet Space Sci 15: 1571–1583. https://doi.org/10.1016/0032-0633(67)90090-6. [CrossRef] [Google Scholar]
- Hargreaves JK, Shirochkov AV, Farmer AD. 1993. The polar cap absorption event of 19–21 March 1990: Recombination coefficients, the twilight transition and the midday recovery. J Atmos Terr Phys 55: 6. [Google Scholar]
- Hartz TR, Montbriand LE, Vogan EL. 1963. A study of auroral absorption at 30 MC/S. Can J Phys 41: 581–595. https://doi.org/10.1139/p63-061. [CrossRef] [Google Scholar]
- Holt C, Landmark B, Lied F. 1961. Analysis of riometer observations obtained during polar radio blackouts. J Atmos Terr Phys 23: 229–243. https://doi.org/10.1016/0021-9169(61)90048-4. [CrossRef] [Google Scholar]
- Hosokawa K, Iyemori T, Yukimatu AS, Sato N. 2000. Characteristics of solar flare effect in the high-latitude ionosphere as observed by the SuperDARN radars. Adv Pol Up Atmos Res 14: 66–75. [Google Scholar]
- Hunsucker RD, Hargreaves JK. 2003. The high-latitude ionosphere and its effects on radio propagation. Cambridge atmospheric and space science series, Cambridge University Press, Cambridge. [Google Scholar]
- ICAO. 2018. Annex 3 to the Convention on International Civil Aviation, Meteorological Service for International Air Navigation, ICAO International Standards and Recommended Practices, Twentieth Edition, July 2018, http://store.icao.int/products/annex-3-meteorological-service-for-international-air-navigation (last accessed 11 June 2020). [Google Scholar]
- ICAO. 2019. Manual on Space Weather Information in Support of International Air Navigation, ICAO Doc 10100, First Edition, https://store.icao.int/products/manual-on-space-weather-information-in-support-of-international-air-navigation-doc-10100 (last accessed 11 June 2020). [Google Scholar]
- Kauristie K, Andries J, Beck P, Berdermann J, Berghmans D, et al. 2021. Space weather services for civil aviation - challenges and solutions. Remote Sens 13: 3685. https://doi.org/10.3390/rs13183685. [CrossRef] [Google Scholar]
- Kavanagh AJ, Marple SR, Honary F, McCrea IW, Senior A. 2004. On solar protons and polar cap absorption: constraints on an empirical model. Ann Geophys 22: 3. https://doi.org/10.5194/angeo-22-1133-2004. [CrossRef] [Google Scholar]
- Knipp DJ, Bernstein V, Wahl K, Hayakawa H. 2021. Timelines as a tool for learning about space weather storms. J Space Weather Space Clim 11: 29. https://doi.org/10.1051/swsc/2021011. [CrossRef] [EDP Sciences] [Google Scholar]
- Kouznetsov A, Knudsen DJ, Donovan EF, Spanswick E. 2014. Dynamics of the correlation between polar cap radio absorption and solar energetic proton fluxes in the interplanetary medium. J Geophys Res 119: 1627–1642. https://doi.org/10.1002/2013JA019024. [CrossRef] [Google Scholar]
- Kumar VV, Parkinson ML. 2017. A global scale picture of ionospheric peak electron density changes during geomagnetic storms. Space Weather 15: 637–652. https://doi.org/10.1002/2016SW001573. [CrossRef] [Google Scholar]
- Levine EV, Sultan PJ, Teig LJ. 2019. A parameterized model of X-ray solar flare effects on the lower ionosphere and HF propagation. Radio Sci 54: 168–180. https://doi.org/10.1029/2018RS006666. [CrossRef] [Google Scholar]
- Lu G, Richmond AD, Roble RG, Emery BA. 2001. Coexistence of ionospheric positive and negative storm phases under northern winter conditions: A case study. J Geophys Res 106: 24493–24504. https://doi.org/10.1029/2001JA000003. [CrossRef] [Google Scholar]
- Matzka J, Bronkalla O, Tornow K, Elger K, Stolle C. 2021a. Geomagnetic Kp index. V. 1.0, GFZ Data Services. https://doi.org/10.5880/Kp.0001. [Google Scholar]
- Matzka J, Stolle C, Yamazaki Y, Bronkalla O, Morschhauser A. 2021b. The geomagnetic Kp index and derived indices of geomagnetic activity. Space Weather 19: 5. https://doi.org/10.1029/2020SW002641. [CrossRef] [Google Scholar]
- Mendillo M. 2006. Storms in the ionosphere: Patterns and processes for total electron content. Rev Geophys 44: 4. https://doi.org/10.1029/2005RG000193. [CrossRef] [Google Scholar]
- Mitra A. 1974. Ionospheric effects of solar flare, Vol. 46, Astrophysics and space science library, Reading, Massachusetts. https://doi.org/10.1007/978-94-010-2231-6. [CrossRef] [Google Scholar]
- National Research Council. 2008. Severe space weather events – Understanding societal and economic impacts: A workshop report. Natl. Acad. Press, Washington, D.C., 144 p. [Google Scholar]
- Newell PT, Greenwald RA, Ruohoniemi JM. 2001. The role of the ionosphere in aurora and space weather. Rev Geophys 39: 2. https://doi.org/10.1029/1999RG000077. [Google Scholar]
- NOAA. 2004. NOAA Intense Space Weather Storms October 19-November 07, 2003, NOAA National Weather Service, U.S. Department of Commerce Report, Silver Spring, MD. [Google Scholar]
- Prölss GW. 1995. Ionospheric F-region storms. In: Handbook of atmospheric electrodynamics, Vol. 2, Volland H. (Ed.), Chap. 8, CRC Press. Boca Raton, Fla, pp. 195–235. [Google Scholar]
- Prölss GW. 2008. Ionospheric storms at mid-latitude: A short review. In: Midlatitude ionospheric dynamics and disturbances, Kintner PM Jr., Coster AJ, Fuller-Rowell T, Mannucci AJ, Mendillo M, Heelis R (Eds.), Geophys. Monogr. Ser., Vol. 181, AGU. Washington, D.C., pp. 9–24. https://doi.org/10.1029/181GM03. https://agupubs.onlinelibrary.wiley.com/doi/10.1029/181GM03. [Google Scholar]
- Prölss G, Werner S. 2002. Vibrationally excited nitrogen and oxygen and the origin of negative ionospheric storms. J Geophys Res 107: A2. https://doi.org/10.1029/2001JA900126. [Google Scholar]
- Redmon RJ, Seaton DB, Steenburgh R, He J, Rodriguez JV. 2018. September 2017’s geoeffective space weather and impacts to Caribbean radio communications during hurricane response. Space Weather 16: 9. https://doi.org/10.1029/2018SW001897. [Google Scholar]
- Sauer H, Wilkinson DC. 2008. Global mapping of ionospheric HF/VHF radio wave absorption due to solar energetic protons. Space Weather 6: S12002. https://doi.org/10.1029/2008SW000399. [Google Scholar]
- Schumer EA. 2009. Improved modeling of midlatitude D-region ionospheric absorption of high frequency radio signals during solar X-ray flares, PhD Dissertation, AFIT/DS/ENP/09-J01, U.S. Air Force, Wright-Patterson Air Force Base, Ohio. [Google Scholar]
- Schwentek H. 1961. Short wave fadeouts, their modes and complete characterization. J Atmos Sol-Terr Phys 23: 68–84. https://doi.org/10.1016/0021-9169(61)90033-2. [CrossRef] [Google Scholar]
- Sergeev VA, Shukhtina MA, Stepanov NA, Rogov DD, Nikolaev AV, Spanswick E, Donovan E, Raita T, Kero A. 2020. Toward the reconstruction of sub-storm-related dynamical pattern of the radiowave auroral absorption. Space Weather 18: 3. https://doi.org/10.1029/2019SW002385. [CrossRef] [Google Scholar]
- Sigernes F, Dyrland M, Brekke P, Chernouss S, Lorentzen DA, Oksavik K, Deehr CS. 2011. Two methods to forecast auroral displays. J Space Weather Space Clim 1: A03. https://doi.org/10.1051/swsc/2011003. [Google Scholar]
- Starkov GV. 1994. Mathematical model of the auroral boundaries. Geomagn Aeron 34: 3. [Google Scholar]
- Stonehocker GH. 1970. Advanced telecommunication forecasting technique. In: AGY, 5th., Ionospheric Forecasting, AGARD Conf. Proc, Vol. 29, pp. 27–31. [Google Scholar]
- Swalwell B, Dalla S, Kahler S, White SM, Ling A, Viereck R, Veronig A. 2018. The reported durations of GOES soft X-ray flares in different solar cycles. Space Weather 16: 6. https://doi.org/10.1029/2018SW001886. [Google Scholar]
- Tesema F, Partamies N, Tyssøy HN, Kero A, Smith-Johnsen C. 2020. Observations of electron precipitation during pulsating aurora and its chemical impact. J Geophys Res 125: 6. https://doi.org/10.1029/2019JA027713. [CrossRef] [Google Scholar]
- Tulasi Ram S, Liu CH, Su S-Y. 2010. Periodic solar wind forcing due to recurrent coronal holes during 1996–2009 and its impact on Earth’s geomagnetic and ionospheric properties during the extreme solar minimum. J Geophys Res 115: A12340. https://doi.org/10.1029/2010JA015800. [Google Scholar]
- Watanabe K, Nishitani N. 2013. Study of ionospheric disturbances during solar flare events using the SuperDARN Hokkaido radar. Adv Pol Sci 24: 1. https://doi.org/10.3724/SP.J.1085.2013.00012. [Google Scholar]
- Zaalov NY, Moskaleva EV. 2016. A polar cap absorption model optimization based on the vertical ionograms analysis. Adv Space Res 58: 9. https://doi.org/10.1016/j.asr.2016.07.024. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.